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. INTRODUCTION

1.1 This Work vs. Katsambalos (1981)

This work is concerned with the computation of the gravity -
disturbance vector external to the earth, from given gravity anomaly
data referred to the earth's surface. The central problem is how to
rigorously account for the irregular shape of the topographic surface to
which the data refer. This work is a continuation of the work of
Katsambalos (1981) entitled "Simulation Studies on the Computation of
the Gravity Vector in Space from Surface Data Considering the
Topography of the Earth".

There are a number of differences between the present work and
that of Katsambalos. One difference is the emphasis placed in the
present study upon the use of suitable models for the separate modeling
of different frequency ranges of the total disturbance vector signal. To
this end, greater attention than that in Katsambalos' Section 9.3 is now
given to the use of the spherical harmonic representation to model the
low frequency components of the signal. And, as an entirely new
addition to the work of Katsambalos, a study is now- made of modeling k
the very high frequency components of the signal as the integrated
gravitational effects of certain shallow topographic masses of assumed
constant density. The representation by topographic mass effects, in
which the input consists of detailed terrain elevation data, is advocated
in the works of Tscherning and Forsberg (see Tacherning (1979),
Forsberg and Tscherning (1981), Tscherning and Forsberg (1983),

the total field the fields already represented by spherical harmonics and ::
topographic mass effects, is a relatively smooth and low energy field.

As suitable models for representing the residual field, a study is
made here of the classical integral model, the so-called Dirac approach,
and the least squares collocation approach, which are models studied
also in Katsambalos (ibid). In contrast to Katsambalos, the present
study relies upon the use of the classical integral model, but with mean
topography accounted for, as one of viable complementary models that
can be operationally used. For the Dirac and least squares collocation
approaches the present study gives an expanded presentation over that

*of Katsambalos, in order to be able to numerically experiment on
different possible models that actually fall under the heading of being
Dirac or least squares collocation approaches. Specifically, point mass -'
modeling and point dipole modeling are experimented on under the
heading of being Dirac approaches, in addition to experimenting on the 6%

1.
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usual modeling by gravity anomaly impAlses on an internal spher.-
(Kataambalos, ibid, Chapter 6). Under the least squares collocation
approach, experiments are performed using empirical covariance
functions that are based on white noise gravity anomaly and white noise
disturbing potential distributions on an internal sphere. Finally, the
present study has taken into account the questions raised by
Bjerhammar and Sjoberg (1982, private communications) and by
Tscherning (1983a) about Katsambalos' conclusions on the Dirac and least
squares collocation approaches.

For numerical experimentations the present study has now used real,
as opposed to simulated, gravity and terrain elevation data. This allows
for the verification and evaluation of various theoretical models as
applied to the actual variations present in the earth's gravity field. A
detailed study of the spectral characteristics of the spatial disturbance
vector signal, as well as its response to gravity anomaly data of varying
resolution and distance away from the computation point, is given ...
(Chapter 3) to help in the design of models and numerical experiments.

It should be mentioned that the Green's approach studied also in
Katsambalos is not at all used in the present study. The reason is that
the said approach requires as data gravity disturbances and disturbing
potentials on the earth's surface, the elevations of the surface points,
and the North-South and East-West components of the surface
inclinations. These data are very difficult or impossible to obtain with
sufficient accuracy and density in an operational environment.

1.2 Preliminaries

We use the following conventional notations of gravimetric geodesy:
, gravity vector of the earth, referred to simply as gravity vector

" gravity vector of the reference ellipsoid, referred to as normal
gravity vector

g magnitude of J, referred to as gravity

Smagnitude of 1, referred to as normal gravity

W potential of 2 (i.e., : grad W), referred to as gravity potential

U potential of ( (i.e., grad U), referred to as normal gravity
potential.

In the above we are working in a body-fixed coordinate system (i.e., one
rotating with the earth or ellipsoid), and the gravity vector is the
resultant of the body's gravitational force and the centrifugal force of
the system's rotation.
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Fundamental to most gravimetric analyses is the disturbing potential
T, defined as

T = W - U. (1.1)

The force associated with T is the gravity disturbance vector t, i.e.,

= grad T. (1.2)

Based on the above definitions, * can also be written in the familiar
form:

= - :#. (1.3)

Equation (1.3) forms a basis for modeling the gravity vector J, as
the sum of I and 1. The sum is dominated by the normal gravity vector
S, which is rigorously computable (see, e.g., Heiskanen and Moritz, 1967,
sec. 6-2). For the spatial gravity disturbance vector 1, no closed
computational formulas exist, but its accurate modeling from
observational data on the earth's surface is precisely the subject of the
present study.

Basically, the modeling of t proceeds through its relation (1.2) to
the fundamental function T. In turn the function T can be linked to
quantities obtainable from observations, most commonly the gravity
anomaly. Indeed, in this report we use the gravity anomaly as
fundamental data for our modeling procedures. In the following we
detail the precise meaning of the quantity referred to as gravity
anomaly, and discuss the relationship between gravity anomaly and
disturbing potential T.

We have the following conventional definition of gravity anomaly at a
point P (Heiskanen and Moritz, 1967, pp. 83, 91; Moritz, 1980, p. 353;
Jekeli, 1981, pp. 39, 120; Moritz, 1983, pp. 4-7):

AgP = gp - (1.4)

That is, the gravity anomaly at P is the difference: gravity at P minus
normal gravity at some point Q. Point Q is called the normal point of P,
and is established such that (a) the normal gravity potential U at Q is
equal to the actual gravity potential W at P (see Figure 1):

U(Q) W(P), (1.5)

.................................................... ~ . ........- .". .'
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6

W = W(P) = constant
P (geopotential surface)

U = U(Q) = W(P) -,

(spheropotential surface)
.

Normal Plumb
Line

Figure 1. Construction of the Gravity Anomaly.

and that (b) P and Q lie on the same plumb line of the normal gravity
field. The gravity anomaly (1.4) is distinct from the gravity anomaly
vector, defined as (Heiskanen and Moritz, 1967, p. 83):

Atp = tp - IQ. (1.6s) .'.

Jekeli (1981, Chapter 4) shows that the definition (1.4) leads to the
following rigorous relation between the gravity anomaly and the
disturbing potential at a point:

Agp + -L T + + O(e')'(1.7)

with

Sp 4W e w (1.8)

a hp Hp' o..

and where
• ° °
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* derivative along the plumb line of the actual gravity field
THi

*. ' derivative along the plumb line of the normal gravity field;
7 ah this is not distinguished from the derivative along the

straight ellipsoidal normal (see ibid., p.119)

O(e') indicates that the omitted terms are on the order of e' Ag<O.01
mgal (e2 = square of eccentricity 0 0.0067; and Ag has a
maximal value of 300 mgal).

The term ep of (1.8) is dependent on the deflections of the vertical
(ibid., eqs. (4.8), (4.22)), and has a magnitude of less than 0.34 mgal.
Retaining only the first two terms and dropping the subscripts in (1.7),
we obtain:

.5 Ag -T +  a' T.(19

Equation (1.9) is exactly the same as the boundary condition that
results from conventional linearizations of Molodensky's boundary value
problem (see e.g., Molodenskii et al., 1962, chap. V, or Heiskanen and
Moritz, 1967, sec. 8-5). Moritz (1980, p.336) writes that such
linearizations are "practically sufficiently accurate but not completely
rigorous". In the rigorous linearization of Krarup (1973) (see Moritz,
ibid., pp. 337-349) the resulting boundary condition is of the form (1.9)
also, but with Ag interpreted as the component of the gravity anomaly
vector (see (1.6)) in the downward direction of the isozenithal and with
the derivatives taken along the direction of the isozenithal. For
practical modeling problems, which is our interest in the present report,
it is convenient to use (1.9) in our original meaning that Ag is the
gravity anomaly (1.4) and that derivatives are taken along the ellipsoidal
normal. Moritz (ibid., pp. 352-353) has termed (1.9) as the "practical
boundary condition".

Under the so-called spherical approximation (Heiskanen and Moritz,
1967, pp. 87-88), the normal derivative is approximated by the radial
derivative,

(1.10) .

and the normal gravity is approximated by the attraction of a
homogeneous sphere,

kM
2r3*
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(1.11), (1.9) transforms to the usual spherical approximation:

- 4T 2 T. (1.12)
or r Ag _. _._

From Jekeli (ibid., pp. 122-123) a more rigorous transformation of (1.9) --

neglecting only terms of O(el) can be written as follows:

g !T T - e2 sini cos# - +

or r

+ [6J2  P2(sin*) -3 '-2r (1 -Sin2,)T (.3

To review standard notations, we have:

r, *, X geocentric radius, geocentric latitude, and longitude of the point
to which the Ag and T refer

e eccentricity of the reference ellipsoid

J 2 second degree zonal harmonic of the normal gravity field

P 2 second degree Legendre polynomial

a semi-major axis of reference ellipsoid

kM geocentric gravitational constant

w rotational speed of the earth.

Equation (1.13) is of the form of (1.12), but with two terms on the order
of e 2 added to correct for the effect of spherical approximation in
(1.12). To see that the last term of (1.13) is O(e 2 ), refer to Equations
(2.14) and (2.15) of Chapter 2. The first correction term of (1.13)
corrects the first term of (1.12), and the second correction term
corrects the second term of (1.12). If terms on the order of the earth's
flattening f (f z e 2 /2 = 0.003) are neglected, then (1.13) reduces to

e (1.12).

Indeed, the formal meaning of spherical approximation is the
neglection of terms on the order of f in equations such as (1.13)
relating quantities of the anomalous gravity field. The anomalous

r :-::
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gravity field is the one associated with the disturbing potential T. A ,,
useful geometric meaning of spherical approximation is given in Moritz

(1980, pp. 351-352). This meaning is in terms of a spatial mapping of
points, as shown in Figure 2.

It is shown that a point P with geocentric coordinates (r, i, A) is
mapped onto a point P" with geocentric coordinates (R + h, *, A), where
R is a mean earth radius (usually, R = 6371 km), h is the height of
point P above the reference ellipsoid, and * is the geodetic latitude of
P. The spherical approximation consists in using P' instead of P in all
calculations. Formally, this means using (R + h, #) as geocentric
(radius, latitude) in all calculations.

Finally, below we outline the procedure by which the gravity

anomaly as defined in (1.4) can be obtained from observational data on
the earth's surface. More details can be found in Rapp (1984, pp. 3-7).
The procedures result in gravity anomalies that refer to the earth's
surface, and these anomalies are the fundamental data for our modeling
procedures in this report. We have the following steps:

P-(R+h, *, )
P(r, , )h'

h

rr

b R

ELLIPSOID SPHERE

Fiture 2. Mapping Under the Spherical Approximation

",7
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a) gravity gp is measured on the earth's surface

b) by leveling procedures the potential difference denoted by Cpi is

obtained, where

°..cpi WPwp (114

with

Wp gravity potential at P

Woi gravity potential on the i-th equipotential surface of the
earth's gravity field being used as reference surface of
leveling. The reference surface of leveling is also referred
to as "height datum" or "vertical datum". The index i is
used to account for the realistic case of several different
height datums being used in different parts of the world,
i.e., there is no unique world vertical datum at present.

c) A "normal height" Hi* (Heiskanen and Moritz, 1967, sec. 4-5) can be
obtained from:

Hi*= C 1.15)

where j is an average value of normal gravity along the plumb line.

d) A normal gravity is computed:

-iy 7(Hi*, Op, Xp), (1.16)

i.e., as the normal gravity at geodetic coordinates (HiS, Op, Ap). In
practice , it is satisfactory here to use instead of Hi* the
orthometric height Hi (Cruz and Laskowski, 1984, eq. (3.1.4)).

e) A gravity anomaly is computed:

." A g i = g p - Y i " 1 1 . 1 7 ). .,

f) The Agi of (1.17) should then be corrected to yield the gravity
anomaly Ag defined by (1.4). We first define (Rapp, 1984, eqs. (13),
(22)):

. .
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AW= - o(1. 18)

AW0 i = Wo - Woi, (1.19)

where

Wo gravity potential on an assumed world vertical datum (e.g., the
geoid)

Uo normal gravity potential on the surface of the equipotential
reference ellipsoid.

Then, the Ag of (1.4) can be obtained from the Agi of (1.17) as
follows (see Rapp, ibid., eq. (29)):

Ag =Agi + - AW0 i AW.
r r

g) Theoretical developments in gravimetric geodesy have been
considerably simplified by assuming the disburbing potential T to be
a harmonic function outside the earth's attracting masses. To
satisfy this assumption the mass of the atmosphere must be
computationally removed from the problem. As it is, for example, the
force of "gravity" measured in step (a) includes the attraction of
the atmosphere at the point P. The removal of the atmosphere from
the main modeling problem, and its subsequent restoration in the
final result, can be done in a simple way because of the smallness
of atmospheric effects. The theory is discussed in Moritz (1980, pp.
422-425). As a practical procedure for removing atmospheric effects
from gravity anomaly data, the mass of the atmosphere is first
added to the mass of the earth to form the defined mass of the
reference ellipsoid. This affects the value of 7i in (1.17). Then an
"atmospheric correction" 6 is added to the computed gravity
anomaly Agi of (1.17) to get the corrected anomaly Agi*:

Agi °  Agi + 6g. (1.21)

IA Values of 6gA (<1 mgal) are tabulated as a function of height h in
IAG (1970, pp. 72-73). The Agi * instead of Agi is the value to use in
(1.20) to yield the Ag as defined by (1.4), under the assumption
that there is no atmosphere.

h) Another simplifying procedure in gravimetric computations is the

removal of the zero and first degree spherical harmonic terms of the
disturbing potential T from the main modeling problem. These terms
can be modeled using a separate set of procedures (see, e.g.,

.1 .

-. "-.. .
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Heiskanen and Moritz, 1967, pp. 98-99, 107). The first degree terms
do not specifically affect the gravity anomaly Ag, which is related to
T through (1.12). The effect of the zero degree term can be
removed from gravity anomaly data Agi, to get the corrected value
Agil, as follows (see Rapp, 1984, p.8):

AkM .'.-Agr- Agi + , (1.22)

where AkM kM - kME; kME is the gravitational constant of the
reference ellipsoid.

i) Summarizing, the gravity anomaly that satisfies (1.4) under the
simplification of steps (g) and (h) is:

&g= Ag + dgA + r - rW+ 2W (1.23).

r r r 2(.3

where the Agi is from (1.17).

1.3 Scope of This Study

Gravity anomalies that refer to the earth's surface will be the
fundamental data for our modeling procedures in this report. The
topography itself is defined through the ellipsoidal heights of surface
points. Such heights are, for the purposes of analyzing the anomalous
gravity field, not distinguished from available orthometric heights or
some approximate heights from topographic maps or digital terrainmodels (Moritz, 1980, p. 357).

First, we account for the fact that spherical harmonic series
representation has turned out to be a very efficient representation of
the anomalous gravity field up to some limited resolution (see, e.g.,
Tscherning, 1983b). Therefore, in Chapter 2 we discuss the
re-parameterization of the long-wavelength part of the anomalous
gravity field from the given surface gravity anomalies to a set of
spherical harmonic coefficients of the earth's disturbing potential.
Currently envisioned maximum degree of spherical harmonic expansions
is around n = 360, corresponding roughly to a 30"x30' resolution.
Theoretical and practical problems associated with the determination of
the coefficients in such high degree expansions, using a combination of
coefficients derived from satellite motion analysis and of coefficients
implied by terrestrial gravity anomaly information, are recently reviewed
and discussed in Rapp (1984). Our specific concern in Chapter 2 is the
computation of spherical harmonic coefficients from surface gravity
anomaly data, in a manner that takes into account the problems of
ellipticity and topography of the earth. These problems are also

I I.- -
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discussed in Rapp (ibid.), with references to the treatment of ellipticity 5
by Pellinen (1982). Our contribution via Chapter 2 is in providing a
geometric interpretation to the so-called ellipsoidal correction terms
derived in Pellinen (ibid.), by using elementary Taylor series A.
considerations in re-deriving those terms. Using this geometric
interpretation in combination with the treatment of topography in Rapp
(1984) we form recommendations on the computation of harmonic
coefficients from surface gravity anomaly data. These recommendations
have some differences with those of Rapp (ibid.).

The spherical harmonic representation is feasible only up to some
limited resolution, currently on the order corresponding to a maximum
harmonic degree of about n = 360. Problems that increase in importance
with unlimited increase in the degree of spherical harmonic
representation include (a) the effects of series divergence below the
smallest sphere bounding the earth (see, e.g., Jekeli, 1981; Colombo,
1982); (b) the computer storage and time requirements for handling a
very large number of coefficients (see Tscherning et al., 1983); and (c)
the determination of the coefficients of the series, causing problems on
computer requirements, numerical quadratures and the implementation
of a relation between coefficients and gravity anomaly data that
accounts for the earth's ellipticity and topography (see Rapp, 1984).
Therefore, to complete the modeling of the gravity field up to very
detailed resolutions, the globally valid spherical harmonic representation
must be complemented by locally valid solutions.

Before embarking on a detailed study of various locally valid models,
in Chapter 3 we first present a familiarization study of our signal of
interest, namely, the gravity disturbance vector in space. The
information in Chapter 3 will help in the design of solutions and
numerical experiments. Spherical earth formulas for spherical harmonic
and integral representations of the disturbance vector are first . -

reviewed in Section 3.1. The neglect of the earth ellipticity and
topography should not affect the conclusions of the chapter, and at the
same time allows for the use of spectral analysis. In Section 3.2,
spectral analysis yields the power of the signal within a given
frequency range, as a function of altitude in space. Knowledge of such
power distributions is useful for determining the model resolutions
required for representing all significant signal energies at a given
altitude. In Section 3.3 the so-called truncation theory yields the
sensitivity of the signal at a given altitude, to gravity anomaly data of
certain resolution and distance away from the computation point. Such 4..

information is useful for minimizing the required data cap size for a -
given resolution of gravity anomaly data. In Section 3.3 we also examine
the use of different truncation theories, namely, the unmodified

* Molodensky truncation, Meissl truncation, Wong/Gore truncation, and
Improved Molodensky truncation as applied to disturbance vector
computations at altitude.

In Chapter 4 we begin to look at the modeling of the entire
frequency range of the disturbance vector signal, from low to high

4... "
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frequencies. In Section 4.1 some general considerations are first given t77
to help understand the effect of the non-spherical shape of the
boundary surface (i.e., the topography to which the given gravity
anomaly data refer) on the modeling of the external disturbance vector
field. Then in Section 4.2 a composite model is presented that in
principle models the total disturbing potential T in space as the sum of
three components: .

T = Ts + TO + Tt, (1.24)

where

Ts long wavelength component, generated from the spherical
harmonic representation;

Tt short wavelength component, generated as the potential of
certain shallow topographic masses of assumed constant density;

TO medium wavelength residual component, equal to whatever is the
difference (T - Ts - Tt). The T O is modeled in Section 4.2.2
using the classical direct integration of gravity anomaly data,
with mean topography accounted for.

The gravity anomalies Ag0 that are integrated to yield TO are expressed
through (1.12):

ago OO TO,(1.25)
g o= r r

which by definition of T0 becomes:

ago 1-T-T) 7r j-- TS) - - - Tt I, (1.26)or r r ar r

or

ago = Ag- AgS - Agt, (1.27)

i.e., the Ag0 is the residual anomaly left after subtracting from the
original anomaly Ag the anomalies AgS implied by TS and Agt implied by
Tt. Note that Ago continues to refer to the earth's surface.

,°°r
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The components of the disturbance vector corresponding to Ts, TO, F
and Tt are:

(IS, 0, It) = grad(TS, TO, Tt), (1.28)

F;-
and the total disturbance vector is then modeled as:

= s+ + It. (1.29)

In Section 4.3 numerical experiments are conducted on the complete
modeling of 1 using (1.29). In all experiments real gravity anomaly and
elevation duta are used over a 7"x9" mountainous test area in New
Mexico. Of special interest are the experiments that give a feeling for
how well the V' can absorb the resulting unmodeled part caused by the
omission of either 1s or 1t in (1.29). The ability of 80 to absorb ts is
mainly related to the size of the anomaly data cap used in '0. The
ability of ' to absorb It is related to the modeling error introduced by
accounting only for a mean topography, and not for the full variations
of the topograpy, in computing 10 from the surface data AgO. .,,.".,

The solution expressed by (1.24) may be called a continuous
approach, since the underlying theories assume a continuous coverage of
the earth's surface by gravity anomaly data. Under this continuous
approach the integration of anomaly data for the computation of the

", residual potential T O must strictly be performed along the earth's
surface where the data refer. Molodensky and later Brovar have
written the solution in terms of a series of integrals (see Moritz, 1980,
secs. 43 and 44, with reference to Molodenskii, et al., 1962 and Brovar,
1964). However, there is an equivalent solution which is convenient for
conceptualizations and discussions, because it is full of physical
meaning. Details of this solution are given in Heiskanen and Moritz
(1967, sec. 8-10 and pp. 324-325, with reference to Bjerhammar, 1964)
and in Moritz (1980, secs. 45, 46 and pp. 419-420). The solution consists
of (a) analytical continuation of surface anomaly data to a level surface,
followed by (b) classical integration along the level surface as
approximated by a sphere (see Figure 2).

In practice, the computation of analytically continued anomalies
poses rather severe data density and accuracy requirements especially _

in areas of rough gravity field (see, e.g., Noe, 1980). Therefore, the
motivation of the form (1.24) is to make the field TO as smooth as p. .

possible, by "moving" the high frequency components of T away from TO  % %
into Tt. With T O smooth, the difference between the surface anomalies
Ago of (1.27) and the corresponding analytically continued anomalies can
be so small as to be negligible. This way we avoid the specific
computation of analytically continued anomalies by simply equating these
anomalies to the surface anomalies. Numerical investigations related to

..
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these ideas are also included in Chapter 4.

A more rigorous way to avoid the above analytical continuation
computations of the continuous approach would be to perform collocation o-:
in space (see Moritz, 1983, p. 31). The theory is reviewed and numerical
investigations performed in Chapter 5 of this study. Two approaches to
collocation are studied here, namely, the so-called Dirac approach and
the least squares collocation approach. Collocation is a discrete %%
approach, i.e., the theory assumes the data to be given only at a finite
number of discrete points on the earth's surface. The collocation
solution yields an approximation to the disturbing potential, that (a) is
harmonic down to an internal sphere (spherical approximation) completely
embedded within the earth and (b) satisfies the data at the given--7"
points. For feasible economy and convergence of solution, it is still
desirable to use the complementary models Ts and Tt as much as
possible, as in (1.24). In this case we have the model:

T TS + TC + T, (1.30)

where TC denotes the residual component

TC = T - TS - Tt, (1.31)

as modeled by collocation procedures from the gravity anomaly data
(see (1.27)):

AgC Ago Ag AgS Agt. (1.32)

Corresponding to (1.29) we now have:

t =s + IC + "t (1.33) ","

with

= grad Tc. (1.34)

As before, of special interest in the numerical studies in Chapter 5
would be to see how well 8C can absorb the resulting unmodeled part
caused by not using It in (1.33). The discrete model *C would
expectedly absorb 8t better than would the continuous model to of
(1.29), because of the more rigorous way that the topography is taken
into account in the collocation procedures. This point is numerically

-. o



studied in Section 5.4.3.

Finally, a summary along with conclusions and recommendations are
given in Chapter 6.



2. ON THE RECOVERY OF POTENTIAL COEFFICIENTS FROM SURFACE

GRAVITY ANOMALIES

Various theoretical and operational aspects of solving the problem
have been recently reviewed by Rapp (1984), discussing also the
combination of the resulting coefficients with those derived from satellite .- ,
motion analylsis. In this chapter we focus on one aspect of the
problem, namely, the development of a mathematical relation between
potential coefficients and surface gravity anomaly data that accounts for.R
the topography and ellipticity of the earth. A feasible solution is to
first analytically continue the surface values to values that refer to a
sphere, and then use these values on a sphere for directly determining
potential coefficients using the orthogonality relationships of spherical
harmonics. The question lies on how, and to which sphere, the
analytical continuation should be done, and it is to this discussion thatwe propose to contribute in this chapter.

The disturbing potential T can be represented in spherical
harmonics, usually in the following form which is convenient in
connection with satellite dynamics (see Rapp, 1982b, (5)):

T~~~~r,~C Y = L...L.. 0 ~~ , x~), (2.1)'-" n=2 m=-n-""

where

%:Cn potential coefficients. The overbar denotes full
normalization, and the asterisk denotes the
subtraction of the potential coefficients of the
reference ellipsoid;

Cos mX'm, k
Pnim (2.2)

Pnimi(coso) fully normalized Legendre functions of degree n and
order Iml.

Now taking (2.1) in conjunction with either (1.12) or 1.13), one can 4-. .

conceive the recovery of the coefficients C*m from given gravity anomaly e--.

data. For our purposes we will use the more accurate (1.13), especially

16
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since it turns out that its more complicated form does not add any
serious difficulties to the techniques of recovery that we will discuss.

First we ask, to which sphere should the surface gravity anomalies
be analytically continued? The answer is ultimately the equatorial
sphere of radius ra, since the coefficients Cnm as defined through (2.1)
actually refer to this sphere. This is the reason why, for example,
although Rapp (1984, pp. 17-18) initially upward continued the surface
anomalies to the sphere of radius r b = a + 6 km bounding the earth, the
factor (rb/a)n+2 had to be eventually present (see ibid., (53)) in order
to downward continue the bounding sphere anomalies back to the
equatorial sphere where the values are directly needed for the
determination of Cn,. Since the sphere r = a partly penetrates the
earth's masses, it can be questioned whether the required analytical
continuation exists for the true disturbing potential T. However, here
we avoid this problem by taking the view that we are working within
the context of solving the Bjerhammar problem. That is, we are using
the harmonic function T expressed by (2.1) to approximate the true T,
and such function (2.1) is indeed convergent on the sphere r = a and
can be adjusted to agree with observational data through the free
parameters C*m- The instability that arises from the downward
continuation of surface data to the embedded part of the sphere r = a
is remedied by the fact that we are developing (2.1) only up to some
limited resolution, expressed by truncating the series at some maximum

Aga "]"T

Ag Equatorial Sphere

Topography

rE 
• .

Ellipsoid

a

Figure 3. Gravity Anomalies on Different Boundary Surfaces.
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% harmonic degree Nmax (see Jekeli, 1981, pp. 10-11)

The next question is how to implement the analytical continuation
from the topographic surface to the sphere r = a. This can be done by
first reducing the data from the earth's surface to the ellipsoid or the r
geoid as follows (see Rapp, ibid., p. 15):

AgE = Ag- hA ... (2.3)

where Ag refers to the earth's surface, AgE refers to the ellipsoid, and
h can be considered the orthometric height of the surface point. As a
next step that we will detail later, the AgE will be continued to Aga
referred to the equatorial sphere (see Figure 3).

Operationally the gradients in (2.3) can be obtained from an existing
high degree spherical harmonic expansion, in application of the ideas in
Rapp (ibid., p. 20). The correction terms in (2.3) are then evaluated %
numerically and applied to the first term Ag to obtain AgE. Since in
this operational solution (2.3) is not being implemented rigorously, it is
appropriate that its application be limited to the continuation of Ag to
AgE over the distance h, and that it is not used to continue AgE to Ag,
over the distance (a - rE). As can be seen in Rapp (ibid., Table 1), the
magnitudes of the correction terms to transform Ag to AgE are on the
average an order of magnitude smaller than the terms to transform agE
to Aga.

For the continuation of AgE to Aga we implicitly use also a Taylor
series expansion, analogous to (2.3), but this time we find that the
Taylor series terms can be evaluated in an analytical as opposed to a
numerical fashion. This is possible because the deviation between the
surfaces of the ellipsoid and equatorial sphere is such a simple function
of latitude that the Taylor terms themselves can be expanded in
spherical harmonics. Therefore, we find that in a single derivation we
can express the unknown potential coefficients in terms of AgE, without
any need to continue AgE to Aga is a separate step. The starting point
of the derivations is (1.13) applied on the ellipsoid:

-E- - e
2 sin cosy

Ag rE rE rE##

+ -J!E! P2(sin*) - 3"'r r I - sin )] T,, (2.4)- "
rEkM .TE

with TE obtained by applying (2.1) on the ellipsoid:

" Ir l
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n
.TE kZ ).(2.5)

Before proceeding to the detailed derivation of (, from AgE using (2.4)
and (2.5), we should note that (2.5) implies the use of the series (2.1)
below its sphere of guaranteed convergence, i.e., the sphere of radius
r = a. However, numerical investigations by Jekeli (1981) using a
realistic gravity field model would indicate that the use of (2.5) is .
justified at least up to maximum degrees Nmax of practical interest, e.g.,
N.,. around 300.

Let us now discuss the recovery of potential coefficients CM"

occurring in (2.1), from an inversion of (2.4) with (2.5) given AgE. In
our derivations we will arrive at so-called ellipsoidal correction
expressions. A check of our derivations is provided by the agreement
of certain expressions with those of Pellinen (1982) who also deals with
ellipsoidal corrections. The newness of our results over those of
Pellinen (ibid.) consists in deriving new equations (e.g., (2.33)-(2.36)
giving ellipsoidal corrections when geocentric latitudes, not geodetic
latitudes, are used as coordinates) and in using a different derivational

. approach. Our derivations use elementary Taylor series considerations
and naturally lead to insightful physical interpretations of the various
formulas. The general idea of the solution will be to first somehow
transform (2.4) into the form:

U LAg..DnmV Ynm(I, X) (2.6)

n=2 m=-n

where

DnmW conventional spherical harmonic coefficients; these
are constants independent of (T, X); the subscript
T is used to denote the use of geocentric latitude
in the expansion.

Ynm(V, X) conventional spherical harmonics; the use of con-
ventional as opposed to fully-normalized harmonics
is for convenience in the derivations.

It will turn out after the transformation of (2.4) to the form (2.6) that
the D,.V are expressed as some function of the conventional potential
coefficients Cnm (unnormalized counterpart of C m), symbolically:

DnmV= fi(Cnm) , (2.7)
.- 5-
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An inversion of (2.7) yields, symbolically:

C.. f,' (D..V) • (2.8)

Meanwhile, the D,; can also be directly obtained by an inversion of -

(2.6) given the AgE (see Heiskanen and Moritz, 1967, 1-70):

D.o 2n+l f f E., X) P.(sin V) d•

Dn.i 2n+f F J Ag' (*, ) Y..(#, A) de (2.9)2, (n+k) .
( O~~; k= l.,. J

Therefore, the combination of (2.8) and (2.9) yields the desired solution
for the recovery of potential coefficients C.. from AgE; the
full-normalization of Cno yields C&. (see (2.19) below) which is the final
desired quantity. The just outlined solution involves several steps,
which we will now describe.

First, let us collect the following relations where terms proportional
to e' have been dropped (e is the earth's first eccentricity, e 40.0067):

rE =a (1 - sin 2) + O(e') (2.10)2

-. 2a x n+2n+2 2 2# "
1reJ - - sin2, (2.11)

r~n+1 2 e 2 sin 2 #2.2

3rE1 21+(.)

Pa(sin sin - (exact) (2.13)2 -s (exact)

J2 X (Heiskanen and Moritz, 1967, (2-118) (2.14)

rg 2 (see ibid.,(2-107), (2-127)) (2.15) ..

kM 2a

. Th
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It is important to note that in order to maintain a certain accuracy
level, the values of n and * in equations of type (2.11) and (2.12) must
be limited. For example, the next term in (2.11) is: .

(n+2)(n+l) e' sin'* (1.6)
2! 4 (2.16)

and, if this term is not to exceed e2 (say) then n 6 180 and * ' 26" (for -
example) - if n incr Aes then * must correspondingly decrease, and
conversely, in ordir to still keep the term below e2 . Therefore,
analyses based v.a approximations such as (2.11) and (2.12) maintain a -

stated accuracy level up to a certain limited harmonic degree only.

Second, in the following developments it will be more in line with
literature to use conventional rather than fully-normalized spherical
harmonics. Instead of (2.5) we will therefore use:

nkM a n~ l ,= .

TE no Yn.(V, ?.), (2.17)
n
=

2 m =-n•.

where
CaO conventional spherical harmonic potential coefficients;

coefficients are again referenced to a defined reference
ellipsoid as in (2.1), but this time we do not denote
this fact by an asterisk, for convenience in notation

Yno conventional spherical harmonics.

From Heiskanen and Moritz (1967, 1-73 and 1-78) we have these relations
between conventional and fully normalized harmonics and their . :
coefficients (k = Iml):

% n 1 (n+k)! (. M 0) (2.18)
2(2n+1) (n-k)!

Cno /-2n+l no ""'

: .%...:

Cnn 2(2n+1) (nk m (M 0) . (2.19)(n+k)!
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Third, let us re-write the various terms of (2.4). Using (2.17) and
(2.11) the first two terms of (2.4) become:

STE  2 (n-1) C.,, Y.,, (Ts I) +
.=2 .v-.

n=2 =-n

Note that for the purpose of (2.20) we used V instead of * in the (small)
e 2 -term of (2.11). To re-write the third term of (2.4) we substitute
(2.17), use (2.10) and (2.12), and neglect terms involving e 4 to get:

-e 2 C.. sin T cos T (, 7k).
rE. ao-W

n=2 a-n (2.21) • -

To re-write the last group of terms in (2.4), we first use (2.14), (2.10),
(2.13), and (2.15) to simplify the quantity in brackets in (2.4); then we
use (2.12) and (2.17); in all manipulations we drop terms involving e';
we get:

a-6-2 P2(sin V) - 3 2r 2 ( - sin2V) TE - (3 sin2V - 2 )TEkN aE

(2.22)

- n C.. s5nf Y.( , ) -

n=2 m=-n --

3=n

_2e
2 kN

a2 C.. Y..(V, X). (2.23)
n=2 F=-n

Fourth, let us write three relations that have always been found
useful in ellipsoidal correction theory. The first of these relations is
(see Moritz, 1980, 39-46)..

Sin V COS V a Y"+2,, + bnm Y.O + C" Y-a,., (2.24)

., ' * . :

* *. . . . -~ .** .* *.* *. .!
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where (letting k Irnl)

-n(n-k+l)(n-k+2)
anm = (2n+l)(2n+3) '

bm n 2-3k2+n (.5
b', = (2n+3)(2n-l) ; (2.25) pi

(n+l)(n+k)(n+k-1)
Cnm (2n+l)(2n-l)

The second relation is (see ibid., 39-76):

sin2V y,,(VF, X) = Y + Yn + PhM YnM + I.n Yn- 2 ,0 (2.26)

where (again letting k = ImI)

(n-k+l)(n-k+2)
"= (2n+l)(2n+3) I

(2n -2k2+2n-1)" " ( 2.27 ) '.
(2n+3)(2n-l)

(n+k)(n+k-1)
-nm (2n+l)(2n-l)

Note that the left hand sides of (2.24) and (2.26) occur in (2.20), (2.21),
and (2.23), and this is why (2.24) and (2.26) are useful to us. Finally,
the third useful relation is a simplifying relation, which says that a
summation index can be shifted; for example (see ibid., 39-48):

C . C.m Yn.-2,, cn+a,un Cn+a,m Y, • (2.28)
n=2 n=O: ..

It is to be noted that the use of relations such as (2.28) introduces zero
and first degree (i.e., n=0 and n=l) harmonic terms in the formulas.
However, as customary in gravimetric analyses, we will suppress these
terms for convenience by always starting all summations from n=2. The
consideration of these n=0, 1 terms can be treated as a separate
problem, such as what was done in Lelgemann (1970), with numerical
evaluations in Rapp (1981a), for geoid undulation computations.

.LA °*- |
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Fifth, we substitute (2.20), (2.21), and (2.23) into (2.4), then use the
relations (2.24) and (2.26). Summation indices are then shifted as in
(2.28) in order to have only Ynm(V, A), and not Y, 2 ,.(#, A) or
Y.( 2 (V, X), occurring in the expression. All coefficients of Y.m(,X),
which by now are all constants independent of position (T, A) are then
collected to yield a coefficient which must then be exactly equal to the
D.*; of (2.6). Observing further that, from (2.25) and (2.27):

am2-n On (2.29)

2b. = 3Pn. - 1 (2.30) a

c = (n+l) Y,, , (2.31)

We finally get the simplified expression:

kM e~OkM n-+)~.2-C,..
Dneff= (n-l)Cnm + 2 n-n+2) an-, C-,. +

+ [(n2+n+l)n-3] Cnm + (n +3n+4) n+2,, Cn+ 2, (2.32)

which is in the form (2.7).

The last equation agrees with Pellinen (1982, eq. 14), after putting
m=e 2 /2 (cf. Moritz, 1980, 39-12). As in Pellinen (1982), underlining a
term will mean that the term will be omitted for n<4 (note in (2.32) that
if n=3 for example, the underlined term will involve C ,, which is to be
suppressed since we are suppressing all harmonics with n<2).

Given the values AgE on the ellipsoid, the form (2.6) can actually be
inverted to yield the constants Dn,.q directly. In fact, the inverted
expression is (2.9). Therefore, we can assume that the D ,W on the
left-side of (2.32) is known, and hence we are now in a position of
being able to recover the potential coefficients C n, occurring in (2.17),
simply by inverting (2.32). To do the inversion, in the first place we
set e 2 =0 in (2.32) to get the spherical approximation solution:

' .C n a 2 
..

kM(n-1) ",'(2.33)

where the superscript "' denotes spherical approximation and the
subscript "T" denotes the use of geocentric latitude. Knowing the C ,-.'

.. A.
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these values are used in the e 2 terms of (2.32), and the equation thenr
inverted to yield the Cnm. In addition using (2.27), the solution can be
finally written in the form:

*n C. + 6C.r(2.34) A

where

6C;.M= e2 (Pnm4 ;-2,m + qn. C~;V + rm; C;+ 2 ,mW), (2.35)

and with k tinS: e-

= (n -n+2) (n-k-i) (n-k)
pfnMT 2(n-1)(2n-3)(2n-l)

-2n4+2nak 2 -4n3+2nk 2+9n2+2k 2+11In-8
qfl~fl; 2(n-1)(2n+3)(2n-1) (.6

(n2.3n4) (n+k+2) (n+k+l)
rnm; 2(n-1)(2n+5)(2n+3)

The above equations agree with the ones recently given by Rapp (1984).

In some cases we may be handling the AgE-data using geodetic
latitudes 4 instead of geocentric latitudes T. In such cases we have,
instead of (2.6), the expansion:

AgE D,,,* Ynn4 X)) (2.37)

n=2 m-n

We now want to know how the solution consisting of (2.33)-(2.36) will
change. F'irst, let us relate D,,m*, and Dnm;q by transforming (2.6) to the
form (2.37). Omitting terms involving el, we have from Rapp (1981a,
p. 2) that:

Ynm(V, X) = n.(#, X) O W (V - ) ;(2.38)

(V-4) -e2 sin T cos V .(2.39)

We substitute (2.38) and (2.39) into (2.6), then use the relation (2.24).
Analogous to the derivation of (2.32), summation indices are then shifted
in order to have only Y,,, and not Y,- 2 ,, or Yn-. 2,ms~ occurring in the
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expression. All coefficients of Y.m(*, M), which by now are all constants
must be exactly equal to the coefficient D,,. # of (2.37). We get:

Inm* Dnmq - e2 (an-2,m Dn-2,M + bnm Dnm + cn+2,m D.+2,m) (2.40\

which is the desired relation between D.#, and D,.V. Substituting
(2.32) into (2.40), using the approximation (see (2.33))

Drim (n-1) Cnm (2.41)a2 nm

in the (small) terms involving e 2 , and simplifying we get:

e Dnm= (n-1) Cfm + a (3n-1ln+14) , C,,-2  +

a ni 2a 2

+ [(n2+n+l) Pi 2(n-1) bi.- 3- c. --

(n2+5n+2) T+2,m Cf+2,m (2.42)

Equation (2.42) can now be inverted, in exactly the same way as (2.32)
was inverted, to give the following solution based on geodetic latitudes:

C Dnm 2.43)

Cnm =C.;€ + 6Cn(€ (2.44,

where

"Cn;= e2(p.m, C,-;,,+ + qnm# Cn;# + rnm C.+;,M€) I

and with k Im1:

Pnu -(3n2-ln+14)(n-k-1)(n-k)
2(n-1) (2n-3) (2n-l)

q2' -2n'+2n'k2_2n_4nk2+9n2+8k2 +9n-8 .2.45). qn'€ = 2(n-l) (2n+3) (2n-l) 2.45)';€

"n+5n+2) (n+k+2) (n+k+l)
2(n-l)(2n 5)(2n+3)

L . .°°
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The above equations agree with Pellinen (1982, (16)-(18)).

In summary, we are given the values of gravity anomalies AgE on
the surface of the ellipsoid. The AgE are the analytically continued
version of the actually available Ag on the earth's surface. The
anomalies on the ellipsoid can be formally expanded into a series (2.6) or
(2.37) of spherical harmonics, with coefficients D..#, or D..q; obtained
through (2.9). The coefficients Dnm- or Dnmi can then be used in
(2.43)-(2.45) or (2.33)-(2.36), respectively, to generate the conventional
potential coefficients Cnm (see (2.17)). Finally, the Cnm can be fully
normalized by (2.19) to yield the Cnm occurring in (2.1), completing the
recovery of potential coefficients.

In our derivations we have always omitted terms involving the
fourth and higher powers of the earth's first eccentricity e. This does
not mean, however, that the relative error introduced by omission of
terms is only 0(e') every time. Specifically, in (2.11) and (2.12) (see
comments under (2.15)) the relative error depends also on the harmonic
degree n and on the latitude *, in addition to depending on the omitted
powers of e. In the case of (2.12), the omission of terms was not
critical, and in fact, only the first term of (2.12) was eventually used;
the reason is that the use of (2.12) was to write (2.21) and (2.23), which
were equations that already involved only small terms of 0(e 2 ). In the
case of (2.11), however, the omission of terms was critical; the reason is
that (2.11) was used to write (2.20), which was an equation for the
(principal) first two terms of (2.4). In fact, the dominating source of
inaccuracy in our whole derivations was the omission of terms in (2.11),
directly causing significant relative error to (2.20) (see error estimates
later this section).

For higher accuracies we need to consider the next omitted term in
(2.11), namely, the term (2.16). This can be done as follows. First,
there will be the following additional term to the right-side of (2.20):

n
dgi e'kM -E a (n+2) (n+l) (n-l) C., sin'T Y.. (V, X)

n=2 m=-n
(2.46)

By recursive application of (2.26) we have:

sin'V Ynm(¥, X) = Kn,, Y,+,,m + Lnm Yn+ 2 ,m + %

M,, Y,, + N.. Yj,, + Pnm Yn-,m (2.47)

where
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=no Gi, 
.n+aim

Ln, = Qm(Pn. + .+2,) 4

M.M = %m 7n+2,U + Pn + an-2,m Vm (2.48)

N,, .nm(Pn-a,m + P) "

Pnm = 7n-2,m 7.

Equation (2.47) with (2.48) is also given in Pellinen (1982, (9)).

Analogous to the construction of D,.* in (2.32), we substitute (2.47) into ""

(2.46). Summation indices are then shifted as in (2.28) in order to have

only Yn., and not (Y,+,,., Yn+2,m, Yn-2,m, Yn.-,m) occurring in the

expression. All coefficients of Yn(V, X) are then collected to yield a

coefficient Dnm:

1n,,, 8 e' SnM (2.49)

where

SnmI : (n-2)(n-3)(n-5) Kn-,.m Cn-4,, + (2.50)

+ n(n-1)(n-3) L.-2 ,, Cn,-2,m +

+ (n+2)(n+l)(n-1) M., Cnm +

+ (n+4)(n+3)(n+l) N,+ 2 ,, C.+2,m +

+ (n+6)(n+5)(n+3) Pn+ 4,m Cn+4,m • (2.51)

A more complete version of (2.32) can now be written as follows:

D.,V = (n-1)C.,. + e., + S,,,I (2.52)
a2 228.

where Rn, denotes the quantity in braces in (2.32). Equation (2.52)

can then be inverted to yield the unknown C,,.. The inversion can be

done by first writing (2.52) in the form:

Ca2 - e
2  - e

4

C.. . . . . .. . .. . . . ... . . ........... ..V (2 .5 3).. . .- ' ...

. . . . . . . . .. .. . . . . .. . . . . . ..... .o.. 
. ° . .-. .
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From (2.53) we have the "zero order" solution:

Po a2

C k.(n-l) (2.54)

Equation (2.54) is the same as the spherical approximation solution
(2.33), and corresponds to the case when only the first term in (2.11) P2-.
(therefore, only the first term in (2.20)) is used. Using (2.54) in (2.53)
we obtain the "first-order" solution:

-e 
2,

Cn, = C.' - 2(n-l) IRn* . (2.55)

Equation (2.55) is the same as the solution (2.34), and corresponds to
the case when the first and second terms of (2.11) (therefore, also the
first and second terms in (2.20)), plus the correction terms of 0(e 2 )
given by (2.21) and (2.23), are accounted for in the solution. Finally,
using (2.55) into (2.53) yields the "second-order" solution:

= CM, 2(n-1) V (-i) Sn, , (2.56)"

where the superscript "1" means that CA.. 4,. C.. 2,,, Cn,, C+ 2,, C,+2,
from (2.55) are used to obtain RA,,- and SAn. The solution (2.59)
corresponds to the case when the terms of (2.11) and (2.16) (therefore,
also the terms of (2.20) and (2.46)) are accounted for in the solution
along with the terms of (2.21) and (2.23).

A physical interpretation can be given to the zero-,first-, and
second-order solution for the recovery of potential coefficients from
Ag"E-data. This is seen from first noting that we can write the Taylor
expansion:

dg1 dg, + Ldg (rE-a) + - dg (rE-a) 2 +

dlrr=a 2. or 2r=a

Sdg 2(rEa).
!+ o ,rIra + (2.57)

where we define: .'e-

dg r r T = (n-1) C.. Y.(', A) (2.58)

n=2 *=-n

.-.
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and (r 2)

(rE a) - sin 2+ + O(e') ; (2.59)

--dgE = dg(rE, V, A) ;(dg on the ellipsoid) (2.60)

dg, = dg(a, V, X) (dg on the equatorial sphere) (2.61)

Equation (2.20) with the additional term (2.46), which is a starting point
of our derivation, is in the general form of the Taylor expansion (2.57)
truncated after the third term. The zero-order solution in effect uses
only the first term in (2.57), thereby setting dg,-dgE; this means that
in this solution a given boundary value AgE at position (rE, Y, I) is
formally considered to be on the equatorial sphere at position (a, V, A).
The first-order solution on the other hand, uses the first two terms of
(2.57), thereby using the first radial derivative of the dg-field to
distinguish between dg, and dg E. Finally, the second-order solution
uses the first three terms of (2.57), thereby using the first and second
radial derivatives of the dg-field to distinguish between dga and dg E.

To examine numerically the effect of omission of terms, we write
(2.11) more completely as:

n+2 e s 2 + (n+2)(n+l)= 1 + (n+2) -2sinZ +!n_ t__.- sin'# +""

+(n+2)(n+l)(n) e' ~~:
a. + 3: - sin'* + ... (2.62)

With e 2 /2 M 0.003 - f (the earth's flattening), the maximal orders of
magnitude of the terms in (2.62) are obtained at the poles with sin# - 1:

0(e 2-term) nf = 3 x 10- 3 n

O(e'-term) nf 5 x 106 n2  (2.63)

S0(e-term) = -=5 x 10- 9 n' .

The omission of terms estimated in (2.63) directly causes a relative error
in our derivations. Since this source of error is dominating, we can

/" . . . .... . . . . . . .
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also interpret (2.63) as giving maximal estimates of the total relative _I
error itself, caused by the omission of certain powers of e in the
recovery of potential coefficients Cns. from AgE-data. Such estimates,
which agree with those of Pellinen (1982), are evaluated in Table 1 for
various values of n and various powers of omitted e-terms.

Table I says that for n=200, for example, the omission of e 2 and
higher powers (i.e., the use of only the first term in (2.34), (2.44), or
(2.53)) causes a relative computational error of 60% in C*ooM; the
percentage error decreases to 20% and to 4% when terms proportional to %
a 2 and e', respectively, are considered in the formulas.

Table 1. Relative Error Caused by the Omission of Terms Proportional
to Certain Powers of e, in the Recovery of Potential
Coefficients C., from Anomaly Data Age on the Ellipsoid.

Minimum Relative Value of Relative Error
Power of e Error en for
in Omitted
Term[0CJ n=30 n=100 n=200 n=300

ea 3 x 10- 3 n 0.09 0.03 0.60 0.90 . "

e 5 x 10-' n2  0.0045 0.05 0.20 0.45

e4 5 x 10-' n3  0.0001 0.005 0.04 0.13

The relative errors n given in Table 1 affect the gravimetric
quantities computed from the C*ne. We can look at short and long
wavelength effects separately by looking at effects on computed gravity A

anomalies Ag and height anomalies. The global RMS effects when using
an expansion to degree and order Nmg x can be expressed as the square
root of (in a sphere of radius ra):".

N
(&g) = ( t (n-l)(2n+l) [O(CEm)]2' ; (2.64)

n=2

0M) a s ' (2n+1) [0(6* ;(2.65)

n=2
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where

0(Cn VR (Cm (2.66)

tR is the relative error from Table 1 or (2.63) .(2.67)&M

From Kaula's rule of thumb, we have the following order of magnitude of
potential coefficients:

- 0(E*.) 10(2.68)
n2

Let us further use values from the Geodetic Reference System 1980:

kM =3986005 x 10' m3 S-2 (2.69)

a =6378137 m .(2.70)

Using (2.64)-(2.70), values of a(Ag) and a(C) were computed and shown
in Table 2, for various maximum degrees of expansion NM&X* For
N..x=2 00, for example, the effect of omitting the (e0, e', e') and higher
powers would be to cause an error of about (5.9, 1.4, 0.2) mgals in
grt rity anomalies and an error of about (0.62, 0.06, 0.01) meter in height
anomalies, on a sphere of radius r=a.

Table 2. Effect of Potential Coefficient Errors 36L~ on Computed
Gravity Anomalies Ag and Hleight Anomalies C
Units: a(ag) in milligals; a(C) in meters.

Minimum Relative Value of fa'(ag)) from f(2.64))t1
Power of Error zR CW~) 1(2.65)J
e in of Potential

* ~~~Omitted Coefficients N NmlO Na20 Nm30
* Terms (from Table 1) m

e2 3 x 10-3 n 0.85 mgals 2.91 5.85 8.79
1.0.49 m0.57 0.62 0.64

e' 5 X 10-6n 0.03 0.35 1.39 3.12
0.01 0.03 0.06 0.10 ..

e' 5x109 n3  0.00 0.03 0.22 0.7
0.00 0.00 0.01 0.02
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It is not surprising that relatively large errors are associated with
the zero-order solution (see the first row of values in Tables I and 2):
the reason is that the true gravity anomaly dg.(a, ¥, X) on the p.
equatorial sphere and AgE(rE, W, A) on the ellipsoid can easily differ
significantly, so that equating Ag=--g (strictly, equating dg,=dgE), as
the zero-order solution does, incurs large errors. The consideration of
the el-terms, as in the first-order solution, means the consideration of
the first radial derivative of the gravity anomaly field to relate Ag. and
AgE, resulting in much smaller errors (see second row of values in
Tables I and 2) than those of the zero-order solution. Finally, a
consideration of e4 terms, as in the second-order solution, means the
additional consideration of the second radial derivative of the field to
relate Ag, and AgE, resulting in even smaller computational errors (third
row of Tables 1 and 2). As seen from Tables 1 and 2, the higher the
harmonic degrees (n) of interest, the higher the order of radial
derivatives of the gravitational field that need to be considered in the
ellipsoidal correction theory.

Summarizing, the determination of potential coefficients requires the
surface gravity anomalies to be analytically continued to some sphere.
Rather than continuing to a bounding sphere as in Rapp (1984), we
recommend continuing to the equatorial sphere where the standard form
of spherical harmonic representation (2.1) refers. For operational
implementation we recommend carrying out the analytical continuation in
two steps. The first step would be to continue the surface data to the
ellipsoid. This can be done (ibid.) by numerically computing the
correction terms of the Taylor series using surface heights and vertical
gradients from an existing spherical harmonic expansion. The second

step would be to analytically continue from the ellipsoid to the
equatorial sphere. This step can be carried out also by Taylor series,
but with the Taylor terms applied analytically through the ellipsoidal
corrections of Pellinen (1982). At maximum degrees of expansions around
n = 300, up to second order Taylor terms need to be applied, and this
can be done through (2.56). Tables 1 and 2 indicate the number of
Taylor terms required for given maximum degrees of expansion and
desired accuracy of continuation from ellipsoid to equatorial sphere.
The effects of the Taylor terms for the continuation from the
topography to the ellipsoid are on the average an order of magnitude
less than the values in Tables 1 and 2 (see Rapp, ibid., Table 1).

%.'
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3. FAMIIARIZATION WITH THE SPATIAL DISTURBANCE VECTOR SIGNAL

Given potential coefficients C*,, the anomalous potential T(r, V, X,) is
expressed in spherical harmonics by (2.1). Then with (2.1) as "

dd

fundamental equation, other gravimetric quantities of interest can be 

derived in spherical harmonics using (2.1) and its first and second
order derivatives. As an example, Rapp (1982) gives a collection of such
derivations for common gravimetric quantities, specifically the height
anomaly, gravity anomaly, three components of the gravity disturbance
vector, and two components of the deflection of the vertical. On the
other hand, given the gravity anomalies AgE on the ellipsoid, the
anomalous potential T(r, T, X) is expressed in an integral formula by
(3.14) below. Now using (3.14) and its first and second order
derivatives, integral formulas for other gravimetric quantities can also
be derived. Examples of such derivations are found in Heiskanen and
Moritz (1967, Sec. 6-4) for the components of both the gravity
disturbance vector and the deflection of the vertical.

Both parameterizations from C6. and AgE have their respective
theoretical and practical problems. The theoretical problem with the C*m
parameterization is the divergence of downward continued spherical
harmonic series. The total (i.e., infinite) spherical harmonic series (2.1)
representing the anomalous potential is not guaranteed to converge, and
in fact will probably diverge, when evaluated below the smallest sphere,
called the minimum sphere, bounding the earth. The errors arising from
this total series divergence generally grow with the depth of
penetration into the minimum sphere and the power (expressed by
degree variances) of the high frequency variations in the anomalous
field. For depths of penetration down to the earth's surface and for
the degree variance decay of the earth's anomalous potential, Jekeli
(1981) shows completely negligible errors coming from total-series
divergence when using a spherical harmonic representation of the
earth's anomalous field to maximum degree Nmx=300.

Of great concern also would be the practical problems associated
with the C,*- parameterization. The slow decay of the C6n. with n
necessitates the handling of a very large number of coefficients in
order to represent all significant variations in the anomalous field. For
example, a 5"x5" resolution which may be needed in certain computations
near the earth's surface would require approximately N..X=2000 or a
total of (2001)204 million coefficients. The use of such high degree
spherical harmonic representation will require a prohibitive amount of W.?
computer storage and time. Also, such high degree representation will
require some sort of re-parameterization from the available Ag to the "

-m, and such re-parameterization will involve difficult practical
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problems related to computer requirements, quadratures, and
implementation of a relation between C.. and Ag that accounts for the
ellipticity and topography of the earth (Rapp, 1984). Finally, there is
the problem of updating a spherical harmonic representation to
incorporate updated gravity anomaly data. Such updates are
inconvenient as they everytime require a new solution for the entire Cn.
set of parameters. Today, taking altogether the theoretical and practical
problems of the C n -parameterization it would appear that a feasible

" upper limit to use would be around Nmx=360.

At higher frequencies (harmonic degrees greater than n=360 or
spatial resolution greater than 30'x30') the direct parameterization from
AgE via an integral formula based on (3.14) below would be appropriate.
Since the high frequency variations are attributable to AgE-data close to
the computation point, the integral formula can be truncated to within a
data cap of limited radius around the computation point. This minimizes
the practical problem of integral formula representations, that of having
to integrate data over a large cap.

Since the spherical harmonic and integral representations
complement each other's deficiencies, the ideal would be to combine the
two representations. Such combination is performed under the headingof "truncation theory" as originated by Molodensky (see Molodensky, et

al., 1962), or more recently, under the heading of "least squares K"
spectral combination theory" (Moritz, 1975; Sjoberg, 1981; Wenzel, 1982).
We will discuss the combination by truncation theory in this chapter,

with special emphasis on the computation of the gravity disturbance
vector components at altitude.

.5.o

3.1 Pormulas for Spherical Harmonic and Integral Representations

From (2.1) we can express the anomalous potential as:

n n+] "

(a~n~l(3.1)
n=2 3=-n

Using (3.1) in the usual definitions of the radial and horizontal gravity
disturbance vector components and the definition of the gravity anomaly ,
in spherical approximation, we can collect the following equations: '""

kM .'V-" ()n+.) (3.2)
n=2 3=-n

I ' "-. . . , " ",.-,_¢ :_'_..' .'.- '-.,.'_ -e'''. '. '' ..c -A _ _' ,., .. .
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6;•=kM ~ ~ - Y..m(, A) ,-

* a n2 C* AV (3.3)

n=2 -n,

I _T IN _ _n

c(3.4)=r cosy OX a2 cosy r " x..-
n=2 m=-n "..

n
Agr= or 2 (n-i) C). (3.5)

n=2 n3=-n

The above formulas are suited under the spherical harmonic
representation of the anomalous field, that is, under a parameterization
from the C8 coefficients. Under the so-called integral representation
we need expressions of gravimetric quantities in terms of "terrestrial"
gravity anomalies. A set of spectral forms for such expressions can be
written by inspection of (3.2)-(3.5) as follows:

p

T : n- Agn (3.6) .'

n=2

(a'+,) (E,)nf+26,. = A n-- IJAg, (3.7)

n=2

6V n+2 " Ag. .:-.

= ~(3.8) --.
6) n=2 cosy 'A Ag "  :

where -(

rE ... geocentric radius to the point on the reference ellipsoid
with the same coordinates (J, A) as the computation point

n
Agn E ' (n-i) [--2 ,n+ Yn (, A) (3.9)

m=-n
.. '

I %
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... nth surface harmonic of the gravity anomalies on the geo- .

centric sphere of radius rE, under a (W, X)-mapping of
these anomalies onto a unit sphere.

A second set of spectral forms can be written analogous to (3.6)-(3.9) in
anticipation of the use, under the integral representation, of the
mapping of points and functions discussed in Section 1.2 (see Figure 2);
we have:

T (-L) _7J AgE, (3.10)

6,+l2 (Efln+ 2 AgE. (3.11)
n=2 nl r

a .r-.

16X} n2 (Rn+2 ;i AgE,. ..
6 (- - l ', 1 1 ( 3.12 ) ---

6). n=2 cosy ax, AgEn

where now:

ri = R + h (3.13)

R ... mean earth radius (6371 km)

h ... height of the computation point above the ellipsoid or the
geoid

AgE, ... nth surface harmonic of the gravity anomalies on the

ellipsoid or geoid, under a (#, X)-mapping of these anomalies
onto a unit sphere. I.e., geodetic latitudes # are to be used
in the defining equation (3.42) below.

Our practical use for the type of equations (3.10)-(3.12), as well as for
their versions where truncation coefficients have been introduced
(details next sections), will only be for degree variance propagations.
This is in view of the fact that degree variances are usually quoted for
the &ge,, of (3.10)-(3.12) and not for the Ag,, of (3.6)-(3.8). For actual
computation of contributions from potential coefficients, however, we will IL
use the type of equations (3.6)-(3.8) along with their versions where
truncation coefficients have been introduced.

%r
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For use under the integral formula representation, we need the
space domain equivalents of (3.10)-0.12). These space domain
equivalents will express the gravimetric quantities in terms of AgE. The
space domain expressions for (3.6)-(3.8) follow immediately from those of
(3.10)-(3.12) by just changing R to rE, r, to r, * to *,and AgE to Ag in
the formulas; however, such expressions will be essentially of noppractical value since we do not have the required detailed Ag on a
geocentric sphere of radius rE. We have- the following space domain
equivalents of (3.10)-(3.12) from Heiskanen and Moritz (1967, Section
6-4):

T(r, V, X) S(r,,'' Ag, do (3.14)

-R r . S(r,. '
6,(r, V, X)=~J * 1  AgE do (3.15)

fr of O~ S(rt. A) co do, (3.16)
4wrlsiD a

where, assuming:

(,X): geodetic corrdinates of the computation point P

0", V): geodetic coordinates of the moving integration point P',

we have:

do cos#'d#'dX\
(integration element)

cos* sin~sin+* + cos~cos#'cos(X' -A)
(angular distance between P and P') (3.17)

tan a cos 0' sin(-X)
cos + sin +* - sin # cos 0' cos(X'-X)

(azimuth from P to P').

The integral kernels in (3.14)-(3.16) can be obtained in the space domain
using (ibid., p. 235); see also Paul, 1983, (1); Shepperd, 1982, p. 102):
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S(r1 , *) t -5t
2 y + Lj R D R2 3y E (3.18)

-R JS(rj, t t2(1-t 2

orD1
3  -t 2 3t3y +2t S(r' (3.19)

-t_~.~ t3 sin~ [+ -8 3 [D1 S2t- 3 E] (3.20)

in which

t = ~;r, R+h (3.21)

Y =Cos ' (3.22)

D (1 -2ty + t2)1/2 3.3

E n 2 1- Y+ (3.24)

The integral kernel for (3.14) and (3.15) are isotropic (independent of
ax), whereas that for (3.16) is non-isotropic (dependent on ax). Equation
(3.18) expresses the familiar space-extended Stokes function, while (3.20)
expresses the space-extended Vening-Meinesz function.

It is of interest to write the spectral forms of the kernels
(3.18)-(3.20). Comparing (3.10) and (3.11) to (3.14) and (3.15),
respectively, applying the principles of eigenvalues and eigenfunctions
of isotropic integral operators (see, e.g., Jekeli, 1980, p. 6; Sunkel,
1981a, pp. 18-19), we must have that:

R S(r1 , ) (2n+1) (J P,'(Y) (3.25)
n=2

-R OS~r,. n+22+1
*rii(2n I+1. P(y (3.26)

n=2
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Ir
A simple check is provided by the fact that if we take the negative of
the derivative of (3.25) with respect to r, we arrive at (3.26) as it
should be. The spectral form of the function (3.20) which forms part of
the kernel for the horizontal disturbance components (3.16) can be
obtained by differentiating (3.25) directly, and verifying from the
definitions in Heiskanen and Moritz (1967, p. 22) that:

P (y) -P, (y) , (3.27)

where the Pnl(y) are the associated Legendre functions of the first
order (m-l). We arrive at:

-t OS(rj. (2n l (-_ILj (_fln+2 Pni(Y) .(3.28)

n=2

Equation (3.28) has a similar structure to (3.25) and (3.26), except that
in (3.28) the PhI(y) and not the Pn(y) is used - this is a consequence
of the non-isotropy of the integral kernel in (3.16).

3.2 Spectral Information Content

This section is a study of the spectral information content of the
radial and horizontal gravity disturbance vector components at various
altitudes. The global RMS (root mean square) value of the radial
disturbance in (3.11) can be expressed analogously to Heiskanen and
Moritz (1967, pp. 260-261) as the square root of:

q2(6r) =  [n-l2 (j 4 Cn (3.29)

n=2

where the Cr, are the degree variances of the gravity anomalies AgE. Of - 1
interest also is the RMS information beyond a given harmonic degree N,
expressed from (3.29) as the square root of:

66"%

/ 1 1 11,) (-l r,,(3.30) |'
. ~nN + 1 '

*--- mmi l ~ . . . . . . . -. .. ..
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The relative omission error incurred by truncating the signal
representation to a maximum degree N can be expressed in percentage
as: "

a7(6,.)

where 47N( 6 r) and 4(6r) are the square roots of the quantities CN'( 6 ,)
a~nd C2(dr), respectively. Quantities analogous to (3.29)-(3.31) can be
written for the total horizontal disturbance 6 N, defined as:

62 6.W2 + 6X2, (3.32)

where 6;F and 6A are given by (3.12). Applying ibid., p. 262, the global
RMS value of the horizontal disturbance in (3.32) can be expressed as
the square root of:

472(5) ~ n(n+l) 1 R) 2fl+4 C~,(.3
22

then we have analogous to (3.30) and (3.31):

OrN (6H) (n-1 2f+ c,, , (3.34)
n=N+ 1

aMN

CN(6H) X 100%~ (3.35)

We numerically evaluated the above expressions for various altitudes
h above the ellipsoid, using R=6371 kmn, r, =R+h, and the so-called
two-component degree variance model (Rapp, 1979; unit: mgal 2 ):

C, 340(n) (0.998006)n+2 + 140.03 (n-1) (0.914232)n+2
(n+i) (n-2)(n+2)

n 3 (3.36)

C2 =7.5 mgaJ2



7W .

42

The summations were carried out to n=5400, corresponding to a space
domain solution resolution of 2' half-wavelength (180"/5400=2').

A presentation of the results is shown in Figures 4 and 5. Sincej
practically identical graphs were obtained for the radial as for the
horizontal component, only graphs for the radial component are shown.
The only notable difference between radial and horizontal results was
that a(6r) always exceeded a( 6H) by about 1.5 mgals for all altitudes
tested. Figure 4 actually shows the quantity apN( 6 ,) from (3.30), or
basically also the quantity ON( 6H) from (3.34). The parameters used were
altitudes h=5, 10, 20, 30, 50, 100, 200, 500 kin, and various harmonic
degrees N.,. defining the lower limit of the summation in (3.30). For
example, Figure 4 says that the use of a radial or horizontal disturbance
representation to harmonic degree n=360 leaves about (16.2, 10.2, 4.5)
mgals to be resolved at (5, 10, 20) km altitude. For altitudes of 100 km
and higher, however, such representation to n=360 is seen to be essen-
tially complete in representing all the information content of the field.
A representation to n=360 may be interpreted as being a spherical har-
monic representation with potential coefficients C*n. complete to degree
and order 360, or it may be interpreted as an integral formula repre-
sentation using "terrestrial" gravity anomaly data with a space domain
half-wavelength resolution of 0.5 (x 55 km on the surface of the earth).

Figure 5 presents another view of the situation by plotting from the 4
quantity EN( 6 r) of (3.31), or with basically the same numerical values
also from rN( 6 ") of (3.35). To construct Figure 5 a given altitude was
first taken, then values of N... that define the upper limit of signal
field representations were searched using (3.31), such that the relative
omission error tm.ax took values of 1%, 3% and 10%. The procedure was
repeated for altitudes ranging from 5 km to 500 km. For example,
Figure 5 says that for an altitude of 30 km we need a representation to
at least n=(720, 540, 360) in order to keep the relative omission error
down to (1%, 3%, 10%). Such values of n correspond to a space domain -.

resolution of (15', 20', 30') half-wavelength, corresponding to about (30,
40, 55) km on the surface of the earth. Using Figure 5 in another way,
one concludes that a representation to n=360 incurs less than 1%
relative omission error for altitudes above 70 km, incurs 3% error at 45
km, and incurs greater than 10% error for altitudes below 30 km.

A final remark should be made. As we have seen the radial and
horizontal disturbance signals both require about the same resolution of
representation to satisfy certain accuracy levels. For example, again
from Figure 5 we see that at an altitude of 5 km and desired accuracy
level of 1%, we need a representation to about n=2500. This corresponds
to a need in an integral representation for 5'x5' gravity anomalies
(180°/2500=5') on the surface of the earth. This is true, but it is also
true that the 5'x5' values need be given only within a very limited data
cap around the computation point and not all over the earth. This is
because of the decay of the integral kernel with distance from the
computation point. Farther and farther away from the computation
point, less and less resolution of data is required. In this aspect, as

. .. ........ ... . .. .'., .,- --...- '.-.' .,- ,
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we will detail in the next section, we have the difference that the
horizontal disturbance component requires significantly larger data caps Z
than the radial component. Therefore, aside from the spectral studythat we have done above, we also need a space domain study of the

actual response of the disturbance signal components in space to
terrestrial gravity anomaly data of certain resolution and distance from ..-
the computation point. The spectral study shows the required maximum
resolutions, but the space domain study will show the required cap sizes '*--
or the actual spatial location and resolution of the required Ag-data. ,-

3.3 Truncation Theory

3.3.1 Isotropic Kernels

Let us write a general isotropic integral operation on the gravity
anomalies AgE, producing a gravimetric quantity f, am follows: "W

f = f f K() AgE do (3.37)47.- or

In this section K(,*) is the isotropic integral operator kernel, that
depends on the angular distance * but not on the azimuth a from the
computation point to the moving integration point. The coordinates to
use in (3.37) are the geodetic coordinates (, X), e.g., to compute the ..
as in (3.17). This is a consequence of the mapping being used to
convert from an ellipsoid to a spherical boundary surface when handling
AgE-data (Figure 2). The foregoing discussions can easily be made to
apply to the handling of boundary values Ag that refer to a geocentric
sphere of radius rE (those defined under (3.9)), by just changing R to
rE, r, to r, * to V, and AgE to Ag in the formulas. Examples of the form
(3.37) are the expressions (3.14) for T and (3.15) for 6r. We can
express (3.37) in spectral form as follows:

f= k. AgE. , (3.38)
2

consistent with the expansions:

K 2 kn P(y) , y cos ' (3.39)

n=2

k f= K(f#) Pn(y) dy (3.40)
-- !'%
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Age = agEn (3.41)
n=2

AgE n+ f f AgE P(y) d, (3.42)
4g n "

The central idea in truncation theory is that there are two estimates
that we denote by AgeT and Age* available for Age, theme estimates
having their respective errors zT and to:

AgET + AgE T  
(3.43)

AgE* = Age + ,o . (3.44)

In these equations the superscript "T" denotes the estimate from
terrestrial data and the superscript "a" denotes the estimate implied by
an available finite set of spherical harmonic coefficients, these two types
of estimates being the ones most often considered. The role of
truncation theory is then to combine the information from the above
estimates for the purpose of computing the unknown quantity f. It is
generally regarded that AgT will be used as carrier of high frequency
information, while AgEs will be used as carrier of low frequency
information about the gravity field. Considering that high frequency
information is associated with data close to the computation point while.
low frequency information is associated with data farther away, then the
combination of AgET and Ag s to produce an estimate f is effected
through the following split of (3.37), as illustrated in Figure 6:

f = f + Af (3.45)

n2 Nf. f (Ko K ) T + X n 3-6
¢ ~ ~n = 2 

'":. -

Af = f - f ff (K-Ks) tTdo - k + k,- Age."

n=2 n=q+l

(3.47)

• 

:: .:
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where we have the kernel for the spherical harmonic contribution (see
Figure 6):

Kc ,0 z O
Ks = (3.48)

..o • truncation cap radius

with the alternative "modification" functions (Molodensky et al., 1962;
Meissl, 1971; Wong and Gore, 1969; Jekeli, 1980):

,c = 0 [Unmodified Molodensky Truncation]

K: = K(4o) [Meissl Truncation]

f2+1 k, Pn(y) [Wong/Gore Truncation]
=2

n=2
Kc = (3.49)

K:= S. Pn (Y) with Sn such that
n2n= 2'."

f (K-K)2 sin V, d m - rin. [Improved Molodensky
#0 Truncation]

In (3.46) and (3.47) the ks are the coefficients in the Legendre
expansion of Ks , expressed as an integral of K" in (3.40); the ens are the
surface harmonics of the error t', expressed as an integral of t" as in
(3.42); and q is the highest degree of spherical harmonic representation.

a" As mentioned under (3.13) of the last section we do not use Age. in the
actual computation of the spherical harmonic coefficient contribution to f
(i.e., in the second term of (3.46)); rather, we use Ag, as given by (3.9)
which for estimates C8. of potential coefficients C.* becomes:

- ,. n+2 b
4g,: 4 Ain - E (n-i) ["M C*. Yn,,,(V, X,) (3.50)

3=-n
,4,'-:..

,; "•'.'7
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Kernel
K: {original kernelf

(K -Ks): {kernel for terrestrial
anomaly contributionj

KS: {kernel for spherical
harmonic contributioni

-'Kc: {modification function}

(truncation cap radius)

Fiur Splitting of the Original Kernel K for the Combination of
Terrestrial Gravity Anomaly arnd Spherical Harmonic
Coefficient Information, in Isotropic Gravimetric Integration.



48

The replacement (3.50) has also been used in Rapp (1981a, second term .
of (34)). 1J

The kernel split illustrated in Figure 6 conforms to the idea that . ..
detailed (i.e., high frequency) terrestrial information need be used only
out to some limited radius -00 around the computation point, and
therefore the kernel (K-K s ) for the terrestrial contribution is set to
zero outside -o. From the space domain point of view the role of the
modification function Kc is then to effect a certain degree of continuity
to the transition from the non-zero values of (K-KO) for * < *o to its
zero values for 1 > #. Or, equivalently, the modification function
provides a certain degree of continuity to each of the component
kernels (K-KO) and Ks of the total kernel K. In this respect the
unmodified Molodensky truncation (KC=O) does not provide good
continuity, as in fact in this case the kernels (K-K') and Ks become
sharply discontinuous at 1 0. Such sharp discontinuities of the
kernels in the space domain, both in function values and derivatives,
are to be avoided because in the frequency domain they directly cause
unwanted oscillations in the Legendre coefficients (k, - kfs ) and kn0.
These oscillations had been variously called "ringing", "ripples", or
"Gibbs phenomenon" in Fourier series analysis. If we have these
oscillations then we are not getting a "clean" separation between high
and low frequency information: (K-K') may have significant energy
leaks into the low freqencies, and Ks may have significant leaks into the
high frequencies. In terms of our expression (3.47) for the total error
Af, the low frequency leaks of (K-K s ) will enlarge the terrestrial data
propagation error (first term in (3.47)) by allowing more low frequency
energies of cT to pass, and the high frequency leaks of ks will enlarge
the spherical harmonic coefficient omission error (third term in (3.47))
and to some extent the spherical harmonic coefficient commission error
(second term in (3.47)) by allowing more high frequency AgE, and zs to
pass.

Several authors have numerically confirmed the significance of
carefully choosing the modification function in the kernel split of the
type shown in Figure 6. We mention only two authors, who present
several comparisons covering all the famous modification functions listed
in (3.49). Jekeli (1980) presents comparisons for the case of the Stokes
kernel and Jekeli (1982) deals with the Stokes, Vening-Meinesz, and
Poisson kernels. Chen (1982) presents comparisons for the
Vening-Meinesz kernel. The treatment of truncation theory for the
(non-isotropic) Vening-Meinesz kernel is only slightly different from an
isotropic case, and we will explain this below. Also below we will
present our own numerical comparisons, for the case of gravity
disturbance vector computations at altitude. In these computations the
basic kernel is the space-extended Stokes kernel, which is differentiated
to yield the radial disturbance kernel and to form the horizontal-A.
disturbance kernel (which is also essentially the space-extended
Vening-Meinesz kernel).

.;~:L ~ :'- -- *2J..P~P ' ' ~% . \i'i' _ __
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The decision on which modification function is the best is usually
based on least RMS value of the total error (commission plus omission) -
of the spherical harmonic coefficient contribution to f. Specifically,
denoting this error by Afs , we have from (3.47):

nf = -8 + kA AgE, (3.51)n=2 n=q+!

with the goal to have the least value for the global RMS, expressed as

the square root of: _-?'

(
2 (Af) = (k-)2 6C, + (kA)2 C. (3.52)

n=2 n:q+l|
Here the 6C, are the anomaly error degree variances implied by the
spherical harmonic coefficient errors and the C, are the anomaly degree
variances themselves, e.g., as modeled in (3.36). Equation (3.52) applies
to any isotropic kernel. The expression for the non-isotropic Vening-
Meinesz kernel will be given below. To summarize the numerical compar-irons (see Jekeli, 1980, 1982; and Chen, 1982 for details) the improved

Molodensky truncation method consistently gives better results (i.e.,
smaller a(Afs)) than any of the other truncation methods listed in (3.49).
For truncation cap radii and accuracy levels of interest, the Meissi
truncation method gives better results than the unmodified method in
the case of the Stokes kernel, but yields poorer results for more local
kernels (those with less remote zone effects) such as the Poisson and

*Vening-Meinesz kernel. The Wong/Gore method is only of interest but
has not been specifically designed to avoid the kernel continuity prob-
lem discussed above, and in fact this method gives significantly poorer
results than the other methods (including the unmodified method) in- typical cases.

3.3.2 Non-Isotropic Kernels

Let us now turn to a non-isotropic integral operation on the gravity
anomalies AgE. Specifically, we will discuss the integral (3.16) for the
computation of the North-South and East-West components of the gravity
disturbance vector in space. We can write (3.16) in the form:

1J V( ) g c da, (3.53)
.). 4w sin ot

5.

I .j
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where V(*) is the space-extended Vening-Meinesz function as given in(3.20). The spectral form of (3.53) can be written as (see (3.12)):

f6T jAgEl

n2 1J6A ~COST 'NA AgEn " ' r

where now we are using an expansion in terms of the associated
Legendre functions of the first order (see (3.28)):

n- 2n+1 (3.55)
n=2-"-'

with the coefficients (see, e.g., Chen, 1982):

-...n. ~l V() Pni(Y) dy . (3.56)
-n(n+1)

Analogous to the split (3.45)-(3.47) for an isotropic integral operation,
we now have the following split of (3.53) for the computation of
estimates 6V and 6A from a combination of terrestrial gravity anomaly
and spherical harmonic coefficient information: "-"

= + (3.57)

4 f (V-V) ail do +X = ' sin Ct .

+ I,; (3.58)
e2 2

n=2 o
.'V..5

* .... * -.
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A6 = fsin a'

n=2 n=q+l '""O.JAgEn

The splitting of the original function V into the function (V-Vs) for the
terrestrial anomaly contribution and the function Vs for the spherical
harmonic contribution is completely analogous to the splitting of K into
(K-KO) and Ks (see Figure 6). A modification function, which can now %
be denoted as Vc, is also used. The difference is that now all
expansions are in terms of Ph1I(y) rather than Pn(y), e.g., in such
equation as (3.49). The replacement indicated in (3.50) is also used.

The total error (commission plus omission) of spherical harmonic
coefficient contribution is given as the sum of the second and third
terms in (3.59):

1= - n}g_ + VAR (3.60)

""A6X " ''q+ B
""~~~ nos 2X n=q+l ".

The total horizontal error A6 H' from (3.60) is obtained from:

(A6F,) 2 = (A6#)2 + (A&X')2  (3.61)

The goal of the choice of modification function in this non-isotropic case
is to have the least global RMS value for 4t6 HO, this RMS value being
expressed as the square root of (cf. Heiskanen and Moritz, 1967, pp.
261-262):

p 2 (A6du) n(n+l)(v.A)2 6C. +

n=2 (.2

+ n(n~l) (Vg) Cn 3.2

n=q+ 1

% '
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3.3.3 Truncation Coefficients__"'

Now let us discuss how to obtain the so-called truncation coef-

ficients k s and v.8 needed in (3.46) and (3.58) for actual estimations and
in (3.42) and (3.62) for error analyses. We will discuss the coefficients
for the computation of the disturbance vector components, for which the
unsplit kernels are (3.19) for the radial and (3.20) for the horizontal.
components. The starting point of discussion is the recursive computa- . -

tion of the unmodified truncation coefficients (i.e., those corresponding
to the use of Kc-K1 C-0; see (3.49)) for the space-extended Stokes func-
tion given in (3.18). Two significantly different sets of recursive
formulas exist, one by Shepperd (1979) and the other by Paul (1983).
Although Paul's recursives are claimed to be more stable than
Shepperd's (see Paul, 1983, Table 3) our own computations showed prac-
tically the same numerical values of individual truncation coefficients
from the two solutions. We did our tests (not shown here) using the
program given in Shepperd (ibid.) and a program supplied to us by
Paul, with all computations implemented in double precision. We used
various altitudes and compared truncation coefficients from degree 2 up
to some reasonable maximum degree of required field representation for
the altitude in question (see Figure 5). Since there was no significant
difference between using Paul's or Shepperd's solution, we simply
decided to use Shepperd's solution for all subsequent applications. .- "

Prom the unmodified truncation coefficients for the space-extended
Stokes function, Shepperd (ibid.) makes extensions to compute the un-
modified truncation coefficients for the functions (3.19) and (3.20) of
radial and horizontal disturbance computation, and gives recursive
formulas and programs for these computations. Shepperd's programs
were converted to double precision computations for our applications.

Now given the unmodified truncation coefficients for the functions
(3.19) and (3.20) of radial and horizontal disturbance computation, it is
relatively easy to convert these coefficients using a few additional
recursive relations to obtain the truncation coefficients under the
Meissl, Wong/Gore, and improved Molodensky truncation methods. For
this purpose we used formulas from Jekeli (1980), which were given for
the Stokes function but are actually applicable to any isotropic kernel
such as the radial disturbance kernel (3.19). For the non-isotropic case
of horizontal disturbance computation we used formulas from Chen (1982)
for the conversion from the unmodified truncation coefficients from
Shepperd's program to modified truncation coefficients under the vari- -

ous truncation methods. This completes the discussion of how to obtain
the truncation coefficients for radial and horizontal disturbance
computations.
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3.3.4 Numerical Investigations

For error analyses using (3.52) and (3.62) we needed the anomaly
degree variances C,, for which we used the two-component model (3.36).
We also needed the anomaly error degree variances 6C,, implied by the
errors in the spherical harmonic coefficient set to degree q. Since we
wanted to test several reference field degrees (q=20, 36, 180, 360) we
decided to use a model for 6C,, testing two models A and B derived
from a white noise process:

Model A:

6Cg o (2n+l) ,n =2, 3, ,q "'

with 02 such that 6CA = 0.5 C (3.63)

Model B:

S6C= 0 , n 2, 3,..., 10
'..." ': ~ 6! = w:(2n+l) ,nD 11, 12, .. '.." ' '

with ao2 such that 6C% = 0.3 Cq (3.64)

To visualize the above noise processes we note that a white noise
process approximates an uncorrelated error process in blocks of certain
size. Specifically, if we have uncorrelated errors, with variance m

2(Ag),

in Ag in blocks of size 8x (radians) then we can write (Jekeli and
Rapp, 1980, (10)):

47 ( (3.65)

From (3.63) and (3.64) we can also express ao2 as:

2 x C
' 2q - (3.66)

where x denotes a constant factor (x 0.5 in (3.63), and x 0.3 in
(3.64)). A harmonic degree q corresponds to block size 9 of:

e M - (radians) . (3.67)

q

Combining (3.65) - (3.67) we get:
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m2 (Ag) = 4 - - (3.68)

~~2q+1 7r ..

Using (3.68) and the two-component model (3.36) for Cq we can now
visualize the noise process in (3.63) (x=0.5) as being uncorrelated errors
of m(Ag)=(5, 6, 12, 14) mgals in blocks of size 8=(9, 5, 1, 0.5) degrees
when using a reference field to degree q=(20, 36, 180, 360). For (3.64)
(x=0.3) the visualization is that of uncorrelated errors of m(ag)=(3, 3.5, .* ,
7, 8) mgals in blocks of size 8=(9, 5, 1, 0.5) degrees when using a
reference field to degree q=(20, 36, 180, 360). In (3.64) there is an
additional removal of long-wavelength errors corresponding to harmonic
degrees 2 to 10. We believe that (3.64) is a more realistic portrayal of
available data, with (3.63) being on the pessimistic side.

Since only the improved Molodensky truncation method (with ff=10,
see (3.49)) yielded consistently better error analysis results than the
unmodified truncation method, we do not present results for the Meisel
and Wong/Gore truncation methods listed in (3.49). Our results for the
improved Molodensky and unmodified Molodensky truncation methods are
given as Figures 7 to 14. The figures show the RMS truncation error
(in mgals) from (3.52) and (3.62) versus the truncation cap radius *o (in
degrees). Several reference field degrees q, denoted as nref in the
figures with nref=20, 36, 180, 360, were tested using a "high" altitude of
100 km and a "low" altitude of 5 km. Specifically, the Figures 7, 8, 9,
10 give results for the radial disturbance case, while the Figures 11, 12,
13, 14 show results for the horizontal case. The odd numbered Figures
7, 9, 11, 13 contrast the case of having commission plus omission errors
(solid line) against the case of having omission errors only, i.e., the
case of perfect reference field (circled line), under the unmodified
Molodensky truncation. The even numbered Figures 8, 10, 12, 14
contrast the case of using the unmodified Molodensky truncation (solid
line) against the case of using the improved Molodensky truncation
(circled line). The upper limit f of the summation for Kc in the
improved Molodensky truncation (see (3.49)) was taken as H--10, which is
a typical value that can be chosen (see Jekeli, 1982). A value of ff-20
produced slightly larger truncation errors for a given cap size. Also,
the graphs reflect the use of only model B fur 6C, (see (3.64)). The
effect of using model A for 6C, (see (3.63)) was mainly the introduction
of an additional long wavelength error, generally making the graphs
higher by about 0.5 mgal for small cap sizes (*o < 3) decreasing very
slowly to 0.2 mgal for large cap sizes (io up to 40" were tested). The
magnitudes of RMS truncation errors should be judged against the
magnitudes of the RMS signals themselves, which at altitude 100 km is
about 20 mgals and at altitude 5 km is about 36 mgals for both the
radial and total horizontal disturbances (see Figure 4).

Looking at Figure 7 (solid lines) we see that if we everytime
tolerate a 1% truncation error (z0.2 mgal) at 100 km altitude, then we
can use nref-20 (equivalent to the use of mean anomalies in block sizes
of roughly 10*xlO") outside a cap of radius *-13" from the computation

1 -. 4.
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point. Inside this cap Figure 7 shows that the use of nref-20 will make
the truncation error exceed 0.2 mgal, and in order to avoid this we can
shift to the use of nref-36 (=5"x5" Ag-data) which gives loe than 0.2
mgal error down to *-9. For # < 9* we can shift to nref=180 (lxl*
Ag-data) and this will control the error to below 0.2 mgal down to 0=3*.
For *--2" to 3" Figure 7 shows that nref=360 (3 0.5x0.5 Ag-data) can be
used to keep the truncation error below 0.2 mgal. For # < 2*, we can
extrapolate from Figure 7 that in order to keep the error below 0.2 mgal
we can use higher and higher order reference field (denser and denser
Ag-data). Alternatively, for 0' < 2" we can use a more accurate
reference field to degree 360 (more accurate 0.5x0.5 Ag-data), because in
fact Figure 7 shows that an errorless reference field to degree 360 is
sufficient to define the radial disturbance at altitude 100 km with a 1%
relative omission error (this result is consistent with Figure 5 of the
last section). As mentioned at the end of the last section and now
illustrated by Figure 7, there is no need to maintain a single data
density all over the earth. Instead, Ag-data of less and less resolution
as indicated above can be used farther and farther away from the
computation point. Therefore, graphs from truncation theory such as
those we show here directly reveal information about the response of
gravimetric quantities to terrestrial gravity anomaly data of certain
resolution and distance from the computation point.

Comparing Figure 11 with Figure 7, one can see that the horizontal
disturbance requires significantly larger data caps (more than 2 times
larger than the radial case) in order to keep truncation errors below,
e.g., a 0.2 mgal level. Therefore, the horizontal disturbance is much
more sensitive to remote zone data than the radial disturbance. This is
true also at the low altitude of 5 km, where Figure 13 (5 ki) shows
only slightly different curves from Figure 11 (100 ki) in the horizontal
case, while Figure 9 (5 km) shows even smaller cap requirements than
Figure 7 (100 km) in the radial case.

To summarize: using a reasonably typical case, assume we have
detailed gravity anomaly data (e.g., 5'x5') in a cap of radius 3" around
the computation point. In quoting truncation theory errors, only the
errors contributed from outside the inner cap are considered, with the A
error coming from inside the cap being propagated separately using the
first terms in (3.47) or (3.59), if desired. Now in order to account for
remote zone effects (* > 3) assume that we use a reference field to
degree nref-180, e.g., the Rapp (1981) field. Assume further that the
180-field implies the errors 6C, s given by (3.64) (not an unreasonable
assumption for the Rapp-180 field). Then the RMS truncation error
under the unmodified Molodensky truncation theory has a relative value ...
of under 1% at altitudes 100 km and 5 km for the radial disturbance
case, and can reach 4% at 100 km and 2% at 5 km for the horizontal
disturbance case. With the additional presence of long wavelength
(n & 10) errors in the 180-field and implying the errors 6CA given by
(3.63), then the relative truncation errors became 2% at altitude 100 km
but still 1% at 5 km in the radial case, and may reach 6% for altitudes
100 km and 5 km in the horizontal case.

..... . . .. . . . :..::

........... . ... ~
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Looking at the Figures 8, 10, 12, 14 contrasting the unmodified
versus the improved Molodensky truncation methods, one can see that
the improved method gives better results for relatively large cap sizes
only. From the practical point of view, anticipating the use of nref=180,
then we can say that for cap sizes and accuracy levels of interest the
improved Molodensky method offers no significant gain over the
unmodified case in both radial and horizontal disturbance computations.

55%

tA

A .N-

, *~ v . - ~ * . . . . . . . . . . . . . . . . . . . . . .. . .-...



-- -1- -. ,

4. ACCOUNTING FOR THE TOPOGRAPHY IN MODELING THE SPATIAL

DISTURBANCE VECTOR, A CONTINUOUS APPROACH

In Chapter 1 we introduced the gravity anomaly Ag, related to the
disturbing potential T through (1.9):

Ag !- - + T (4.1)
dh -yah

or, in spherical approximation, through (1.12): .-.

Ag OT T. (4.2)*r r

If the given gravity anomalies refer to an equipotential surface,
then the modeling of the anomalous gravity field by classical integral
formulas (Heiskanen and Moritz, 1967, sec. 6-4) would be correct to the '4
order of the earth's flattening (ibid., pp. 240-241). This is usually
considered a sufficient accuracy. In reality, however the gravity
anomaly data refer to the earth's topography, which may significantly
deviate from being an equipotential surface. Therefore, there is a
problem of accounting for the topography in the modeling procedures.

In this chapter we will be concerned with the above topography
problem. We will present a composite model that accounts for the
topography to a good degree of approximation, and which at the same
time is convenient for practical applications. In essence, the composite
model consists of the spherical harmonic model to represent the long
wavelength part of the field, the residual topographic model to
represent the short wavelength part of the field, and the classical
integral model to represent the remaining (medium wavelength) part of
the field. In the next chapter we will additionally examine the least
squares collocation and Bjerhammar's Dirac type models, which are two
other models that can be introduced to account for the topography in
modeling the external gravity field.

4.1 Some General Considerations on the Topography Problem

Some general characteristics of the topography problem can be
concluded by considering the simple crustal density model used also by
Moritz (1968), Lambeck (1979), Jekeli (1981), and Rapp (1982a). From

61
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ekeli (ibid., (2.130)) we have that the spherical harmonic coefficients h,, '

of the equivalent rock topography generate the spherical harmonic
coefficients g * of what we will call "topographic gravity anomalies", as
follows:

gnh. = 4wRGp ( 2Zn) _a(.

where R is a mean earth radius (6371 km), G is the constant of
gravitation, and p is a constant crustal density (2.67 g/cm 3 ). Equation
(4.3) assumes that the topographic masses have been condensed onto the
mean earth sphere of radius R, and the g*h. refer to this same sphere.
Under an Airy-Heiskanen isostatic compensation model, compensating
masses at depth D generate spherical harmonic coefficients gg, of what
we will call "isostatic gravity anomalies", referred to the mean earth
sphere of radius R. Assuming that the compensating masses have been
condensed onto a geocentric sphere of radius (R-D), then the gnc, are
simply the negative attenuated version of gha, as follows:

g = R g (4.4)

The coefficients of the total gravity anomaly referred to the mean earth
sphere can be expressed as: .'.

Zg,. = g.+ gc, n (4.5)

Combining (4.3)-(4.5) we also have:

gn [9 -(J]gM (4.6)

Given the anomaly degree variances C, as in (3.36), then using (4.6) we
can propagate C, to the degree variances Ch of topographic gravity
anomalies, as follows:

Ch C (4.7)

Equation (4.7) expresses the degree variances of the gravity anomaly
field generated by topographic masses, i.e., the field implied by the
spherical harmonic coefficients gh. of (4.3). The presence of the
isostatic depth D in the equation is caused by the following: we first of
all used D to define the gc,-field as in (4.4), then with the condition
(4.5) that the sum of the gh - and gn,-fields is equal to the observed
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field ge,,, the dependence of the gh '-field on the depth D follows.

Now using (4.4) and (4.7), we have the degree variances Ccn of the
gravity anomalies generated by isostatic compensating masses:

n= n n Cn (4.8)

- DIn.2

Using the degree variances C,, Cn , Cc and assuming that we can
computationally isolate the gravitational effect of topographic masses at
harmonic degrees n b N, then we can define various types of fields with
their corresponding gravity anomaly degree variances, as shown in
Table 3.

As shown in Table 3 the "total field" is the total observed field,
with associated anomaly degree variances C,, as modeled for example by
(3.36) for n=2 to -. The "residual topographic field" is generated by
the gravitational influence of topographic masses beyond a given
harmonic degree N. Specifically, the anomaly degree variances for this
field are assumed to be zero for n=2 to N, and equal to the Ch of (4.7)
for n > N. Analogously, the "residual isobtatic field" is generated by
the gravitational i-qluence of isostatic compensating masses beyond
degree N, resulting in anomaly degree variances of zero for n=2 to N
and the Cc of (4.8) for n > N. The "residual-topography reduced field"
is found by subtracting the residual topographic field from the total
field, leaving a field with anomaly degree variances of C,, for n=2 to N
(as in the total field) and Cc for n > N (as in the residual isostatic
field). Of interest also is the "N-field" (for example, called the 180-field
for N-180) which is the part of the total field that is implied by
harmonic degrees less than or equal to N, giving degree variances o" C,,
for n=2 to N and zero for n > N. Note that the N-field theoretically
results by subtracting from the total field the gravitational influence of
both the residual topographic masses and their compensation.

For first numerical considerations, let us illustrate that the
residual-topography reduced field is much smoother (i.e., with much less
power in the high frequencies) than the original "total field." To do
this for the disturbance vector field at altitude the construction of
Figures 4 and 5 of the previous chapter was repeated, this time using
degree variances C. for n=2 to 180 and Cc for n:181 to 5400, instead of
using Cn entirely for n=2 to 5400 as was done in Figures 4 and 5. For
C,, the two-component model (3.36) was again used, and for Cc the
standard depth of compensation D=30 km was assumed in (4.8). For
smoother looking graphs around n = 180, a linear transition was %
arbitrarily provided between C,,o and CCaoo thereby avoiding a sharp
discontinuity that originally occurred between Ciao and Cc 1 *o. Again,
graphs obtained for the radial and horizontal disturbance components

S..
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Table 3. Anomaly Degree Variances of Various Types of Fields.

Degree Variances on a Sphere of
Radius R 6371 km

Field Designation
n 2 to N n > N

Total Field C. C,.

Residual Topographic 0 Ch

Field

Residual Isostatic
Field

Residual-Topographyc
Reduced Field Cn

N-field (e.g.,
180-field for N=180) C. 0

were practically identical so that only graphs for the radial component .....

are shown. The final graphs are shown as Figures 15 and 16,
corresponding to Figures 4 and 5, respectively.

For example, Figure 15 says that for the residual-topography
reduced field the use of a radial or horizontal disturbance
representation to harmonic degree n=360 leaves only about (1.8, 1.3, 0.7)
mgals to be resolved at (5, 10, 20) km altitude, whereas for the total
field (Figure 4) these values are correspondingly (16.2, 10.2, 4.5) mgals.
On the other hand, Figure 16 shows shows for example that for the
residual topography-reduced field, at an altitude of 30 kin, we need a
representation to only n=(390, 290, 195) in order to keep the relative
omission error down to (1%, 3%, 10%), whereas the corresponding
numbers for the total field (Figure 5) are n=(720, 540, 360). Even at the
lowest altitude shown (5 km) the reduced field needs a representation to
only n:620 whereas the total field needs up to n:2500 for 1% relative
omission error. Thus, using a simple crustal model we see in a general
way a considerable smoothing of the field by removal of high-frequency
topographic effects; real data computations later this chapter will
further illustrate this smoothing. An alternative would be to remove
both the effects of high frequency topographic masses and their
compensation; however, we did not choose this approach because of some
practical reasons stated in Section 4.2.3.

A second numerical investigation of interest would be to answer the
question: how sensitive are the various fields of Table 3 to errors in

IVA
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the vertical location of the boundary surface to which the given
anomalies describing the field refer? The vertical location is defined by
the heights of boundary surface points above or below the ellipsoid or
the geoid. Numerical values for such sensitivities are important because ,
they directly indicate the errors committed in the classical integration
procedures in which the topography of the earth is ignored; in such
procedures the given anomalies that actually refer to the physical
surface of the earth are arbitrarily considered to refer to the geoid (or
to the same accuracy, the ellipsoid).

In considering the above sensitivity problem let C, be a general

symbol to denote the anomaly degree variances (on a sphere of radius
R) of any of the fields in Table 3. For simplicity we will assume a
constant error d (e.g., d=1.5 km) in the vertical position of the
boundary surface to which the given anomalies refer. Specifically, we
consider that the correct procedure would be to first analytically
downward continue the given surface anomalies to the geoid through the
distance d, and then to use the downward continued values in a
classical integral representation of the external gravity field. The
erroneous procedure would be to directly use the surface anomalies in
the integral representation formulas mistakenly considering that these
anomalies refer to the geoid. The anomaly error degree variances in
this case would be the degree variances of the difference between the
downward continued anomalies and the given surface anomalies. We
therefore have the following anomaly error degree variances for a field
from Table 3:

r (R+d4~n+21

2 ~
R C"- (4.9)

in which the second term inside the brackets represents the appropriate
factor to downward continue the surface anomalies to the geoid, through
the distance d. IF

We should note that there are upper limits to the values of harmonic
degree n and downward continuation depth d that we can use in order
for (4.9) to keep giving numerically meaningful results. Too large
values of either or both n and d would cause the divergent character of
harmonic analytical downward continuation to play a significant role,
yielding meaningless numerical results. Numerical investigations on the
divergence of downward continuation of the earth's gravity field can be
found, for example, in Jekeli (1981). Our numerical experience with
downward continuation (details next chapter) is in the context of the
Bjerhammar (1964, 1975) approach of analytically downward continuing a
finite set of surface gravity anomalies down to an internal sphere.
Based on getting useful results while downward continuing a resolution .
of 5'x5' values, corresponding to nm...2500, down to depths d on the
order of 5 km, we conclude that for the purposes of the present

., . -, ,
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discussions we can use (4.9) with nmax=2500 and d=1.5 kin, as we will do
below.

The global RMS (root mean square) effect of AC.- on computed radial
disturbances at altitude can be obtained by using AC, in place of Cn in
(3.29):

aU2(Or) = (nl+.-)-'l+ A( , (4.10)

n=2

The percent error in computed radial disturbance due to the error
degree variances AC can be expressed as:

%Error = x 100 (4.11)

where Acr(dr) is the RMS error in radial disturbance, obtained as the

square root of Aa 2 (6r) in (4.10); and (dr) is the RMS value of the total
radial disturbance signal itself, obtained as the square root of a 2 (6r) in
(3.29). As before, there is no need to discuss the case of the horizontal
disturbance, as practically the same numerical results are obtained for
both the radial and horizontal cases.

In Table 4 we show the RMS errors Ai(6r) from (4.10) for various
types of fields from Table 3, and various altitudes of disturbance
computation. For each altitude Table 4 also shows the total RMS
disturbance signal r( 6 r) from (3.29). The following numerical values
were used to construct Table 4: R = 6371 km; r, = R + altitude; vertical
position error d=1.5 kin; compensation depth D=30 km; N=180;
two-component C. model from (3.36); and all summations to infinity where
truncated to n=2500. For perhaps easier visualization we also plotted
the % error from (4.11) as Figure 17.

It is seen that up to altitude 30 km the errors caused on the
residual isostatic field and the 180-field may still be considered
significant, but are considerably smaller than the errors caused on both
the total field and the residual topographic field. This result could
have been expected since the residual isostatic and 180-fields are

smooth" fields, the smoothness being directly caused by the isolation of
the residual topographic field (Figures 15 and 16). For smooth fields
the downward continued anomalies and the given surface anomalies are
relatively close in magnitude, leading to anomaly degree variances AC'
from (4.9) having low energy, and low propagated energy through (4.10),
at all frequencies. Aside from confirming a general expectation, Table 4
and Figure 17 are useful in providing a feeling for actual errors
incurred due to an error in defining the vertical position of the
boundary surface to which the anomaly data refer. The error

ir
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Table 4. RMS Error in Various Types of Disturbance Fields Due to a 1.5
km Error in the Vertical Position of the Boundary Surface for
the Anomaly Data.

Altitude 5 km 10 km 30 km 100 km 500 km

I.- S Disturbance
of Total Field 36.92 32.63 26.04 20.60 13.11

(Mgal)

Field Designation 114 Error (mgal)

Residual Topo-
graphic Field 2.84 1.75 0.53 0.04 0.00

Total Field 2.63 1.57 0.49 0.11 0.02

Residual
Isostatic Field 0.44 0.35 0.16 0.02 0.00

180-field 0.49 0.44 0.30 0.10 0.02

390:'
I

360..- ................

240. -

210.- - ----... .. .. .. ...... .. . .

,soI O. RESIDUAL TOPOGRAPHIC FIELD .. . ........

90.- ---- TOTAL FIELD .. . . .. .

o 8F 3 6 7

7 ERROR

Figure 17. Percentage Error of Various Disturbance Fields at a Given
Altitude, Due to a 1.5 km Error in the Vertical Position of
the Boundary Surface for the Anomaly Data.
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magnitudes shown are in close agreement with real data computations, to
be presented later this chapter, over a mountainous area in New Mexico.

The considerations of this section provide the rationale for a
practical set of procedures to be detailed in the next sections, for
improving the classical integral representation where the topography of
the earth is neglected in modeling the external gravity field.
Essentially, detailed (1 km x 1 km) topographic height information and a
reference topography to spherical harmonic degree 180 will be used,
along with an assumed standard crustal density (2.67 g/cm3 ), to isolate
the field roughness caused by the residual topographic field beyond
degree 180. A spherical harmonic model of the gravity field to degree
180 will also be removed to minimize remote zone effects. The remaining
smooth field, which is primarily the residual isostatic field, will then be
represented by classical iritegral formulas. The smoothness of the latter
field will allow the minimization of the errors associated with the
assumption of the classical integral representation, namely, that the
boundary surface (which in reality is the earth's topography) is a level
surface. The spherical harmonic gravity model will be separately -

evaluated using available operational programs (Rapp, 1982b; Rizos,
1979). The residual topographic field will be evaluated by direct
integration of the gravitational effects of the residual topographic
masses, uaing the operational program of Forsberg (1984).

i
4.2 Complementary Models

Here we summarize the spherical harmonic, residual integral, and
residual topographic models that we will combine for the computation of.
the gravity disturbance vector in space. Pre-requisite for the -
combination of the different models is the ability to compute their
implied gravity anomaly values on the earth's surface where the original
anomaly data refer, and to compute their implied disturbance components -

at the computation points in space. We now summarize the equations
and operational programs for the required computations using the three
models.

4.2.1 The Spherical Harmonic Model

On the earth's surface, the implied gravity anomaly is conveniently
written in the truncated Taylor series form:

Ag'(h, *, X) = AgS(rE, V, X) + (r,. , X) h (4.12), 1 or

where (See Figure 18):

s superscript to denote the spherical harmonic model

S...-....-
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h, *, X geodetic coordinates of the surface point

rE, W, A geocentric coordinates of the point on the ellip-
soid, along the same normal as the surface point
(h, *, X).

sAgs radial derivative of the spherical harmonic model.
or

For the maximum degree of spherical harmonic model that we will use in
this report (nm.x:180) the higher order terms omitted in (4.12) can often
be neglected. This was found from numerical tests related to the "Test

, 3" to be discussed in Section 4.3.4. Higher order terms can be used if
this becomes necessary. Note also that the valid approximation is made
that the radial derivative *Ags/&r can be used instead of the strictly
required derivative *Ags/sh along the ellipsoidal normal. We have:

kM fln+2 .
AgI(rE, V, X) = (n-l) (-rf!!) n. y( X) (4.13)

n=2 m=-n :...'

nn

nlM a n+3

s(rE, , ;(n+2)(n-l - noa V4.(., X)

n=2 m=-n (4.14)

where:

kM geocentric gravitational constant

a equatorial radius

nm fully normalized potential coefficients referred to
those of the reference ellipsoid.

The advantage of the form (4.12) is that the quantities (4.13) and (4.14)
that refer to the point (rE, V, X) can be evaluated in a very fast way on
a grid of constant latitudes and longitudes. For these zvaluations we
will use the program by Rizos (1979). A fast evaluation is needed since
for typical applications we need dense values of AgB(h, *, X) that are on
a regular (4, X)-grid although at varying heights h. For example, for
the tests to be presented later this chapter, we needed a 5"x5' grid of
values covering a 7"x9" area leading to 84x108-9027 values; such a large
number of values would be prohibitive to compute if we were to evaluate
the spherical harmonic series directly at the individual (h, , X) -

positions.
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rE Mean Elevation Surface

* Reference Ellipsoid

Figture 18 Notations for Gravity Disturbance Vector Modeling.

At altitude, we need the spherical harmonic expressions for the
disturbance vector components, These expressions are:

U 2r)fl.$.2 Im X (4.15)

kM _____"__;.a6 o r OT (4.17)n=zm-
W4n ,)+
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where (r, V, A) are the geocentric coordinates of the computation point.
Since for our applications we needed evaluations only at isolated points *

in space (not on a regular grid), we used the operational program
described in Rapp (1982b) to evaluate (4.15)-(4.17) on a point by point
basis. For fast evaluations of (4.15)-(4.17) on a regular grid the
program by Rizos (ibid.) can be modified (which we have done, and the
program is available).

4.2.2 The Residual Integral Model

On the earth's surface, the implied gravity anomaly of this model is
found by subtracting from the originally given surface anomaly
Ag(h, *, N) the anomalies implied by other complemetary models. With

-. Agg(h, *, A) being the spherical harmonic gravity anomaly from (4.12),and denoting by Agt(h, #, X) the topographic gravity anomaly to be

discussed later, then we have the surface gravity anomaly of the
residual integral model as:

Ago = Ag - Age - Agt , (4.18)

where the superscript D denotes the classical direct integration method
(Heiskanen and Moritz, 1967, Sec. 6-4) where Ago will be used.

At altitude, the disturbance components of the residual integral
model are expressed as integrals of the Ago of (4.18), under the
assumption that the Ag0 refer to a level surface, particularly the geoidal
surface. For our purposes, we consider the slight modification that the
Ago might be considered to refer to a level surface at some elevation h.l.
from the geoid (See Figure 18), where hm is some mean elevation of the
anomaly data. Note that in these discussions there is no need to
distinguish between the geoid and the ellipsoid as a reference surface
for heights. The effect of introducing hm is to change the vertical
distance between the computation point in space and the reference level
for the data, from 1H (when hmO) to Ho=H-h (when hm 0), where H is
the altitude of the computation point above the ellipsoid (or the geoid) -

see Figure 18. It is important to distinguish between H. and H, as their
relative difference can be large, for example, H=5 km and hm:l.5 km give
Ho=3.5 km. On the other hand, there is no need to modify the mean
earth radius R=6371 km to R'=R+hm, as the relative difference between R V4F
and R' is small (e.g., even with hm- 4 km, h,/R is only 6 x 10-4).

We now summarize the expressions for the disturbance components
at altitude, based on the residual integral model. For the implementation "-"
of these expressions the operational program fully described in Rapp
(1966b) can be used. From Rapp (ibid.) the disturbance components at
geodetic coordinates (H, *, X) become:

:" ::?:I?:
** * *r**..***
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6  j 7f f A9g F, do (4.19)

f f AO F2COS do 4.20

6X; f AgO F2 cs a do (4.20)

F, t 1t f+ +g F2 D- cia os, 1 nD tc (4.21)

t3~2 D1-t2  CO+6 D+1-t co1

F2 = ~sin# [ + -4 + 2(~l ioV n D1t(4.23)
D3 D 2 Dsin2  2c5]

and:

tR RH ' 6371 km (4.24)

Ho H -h, (Figure 18) (4.25) )~

DI (1 -2t COS -0 + t 2 ) (4.26)

do =cos* d# dJ (rectangular blocks as (.7
integration elements) (.7

~:angular distance between the projected computation point
(R, #p, )Xp) and the moving integration point (R, +", X")

a: azimuth (clockwise from North) from the projected computation
point (R, Op, Ap) to the moving integration point (R, *M, XH).

For our teats we used a modified program extracted from the program in
Rapp (ibid.), where the modification consists of a simplified input/output

S; and the use of only one anomaly block Size (5'x5') instead of all the
mean anomaly block sizes 2'.5 x M'., 5'x5', 30'x30', and 1*lx used by
the original program. The subtraction of Agt in (4.18) removed much of
the roughness of the Ag-field, and the subtraction of Ags drastically

L A' I-
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reduced remote zone effects, so that for the purposes of our tests we
used only 5"x5" mean blocks covering 7"x9" area around the computation ,
points in New Mexico. To be able to make computations at low altitudes
(values of Ho down to 3.5 km were used) the integrated kernel
evaluation implemented in Rapp (ibid.) for 2.5x2.5 blocks was also
implemented in the modified program, at least for those 5'x5" blocks
whose centers were within a distance of 10' from a computation point. .'.

4.2.3 The Residual Topographic Model

This model is advocated in Forsberg and Tscherning (1981) and
Forsberg (1984) for use in general gravity field modeling problems. The
model is generated as the gravitational influence of residual topographic
masses that lie between the actual topography with elevation h and a
reference topography with elevation h s . The residual masses may be
positive (h>h) or negative (hg>h). The reference topography is
conveniently a spherical harmonic expansion of the topography, e.g., to
degree 180, but it can also be any averaged version of detailed
topographic information.

An alternative model is the topographic/isostatic model used in
Sunkel (1983a) and Moritz (1983). This model is generated as the
gravitational influence of the topographic masses (masses between the F
geoid and the topography) and its isostatic compensation. However, for
our applications we choose the residual topographic model because of it.-
definite computational advantages (Forsberg, 1984) over th
topographic/isostatic model, namely, less remote zone and edge effects,
no necessity to compute for the effects of compensating masses, and
availability of a simple approximate expression for the model gravity
anomalies on the earth's surface (see (4.28) below). The use of the
residual topographic model compares favorably with the use of the
topographic/isostatic model as complementary model to collocation for the
prediction of gravity anomalies and deflections of the vertical in a
mountainous test area in New Mexico (Forsberg and Tscherning, ibid.).

Details of the generation of various gravimetric quantities (radial
gravity disturbance, deflections of the vertical, height anomaly, and
gravity anomaly) implied by the residual topographic model are given
along with an operational computer program in Forsberg (1984). The
quantities can be computed on the earth's surface and in space by
integrating the gravitational effects of the residual masses of assumed
constant density (2.67 g/cm3 is a standard crustal density). The prism Z
is the basic integration element used. Close to the computation point
exact prism formulas are used, while farther away approximate formulas
from spherical harmonics and point mass effects are used for economy .

and stability of computations.

On the earth's surface, the implied gravity anomaly Agt of the
residual topographic model can be obtained either by direct prism
integration using Forsberg's program, or by using the approximate

-
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relation (Forsberg, ibid., p. 39):

Agt= 2"p (h-h ) - tc, (4.28)

where:

G gravitational constant

p density

h elevation of surface point

hs  elevation of reference topography

tc terrain correction.

Equation (4.28) is useful in the case when the tc is already given from
the data records, or as we will see later, in the case when tc can be
neglected due to Agt being sufficiently far from the spatial points where
the disturbance components are being computed. In the latter case the
approximate residual topographic anomaly is given by:

-gt = 2nGp (h-h') (4.29) :::

At altitude, the disturbance components 6rt, S 0t 6 t implied by the
residual topographic model can be obtained by direct prism integration
using Forsberg's program. A slight modification is necessary, to
compute the meridional 6 yt and prime vertical 6Xt disturbance
components instead of the deflections of the vertical; we have (Rapp,
1982b, p. 6):

ti = - , ,. -t 7 , ( 4 .3 0 )

where is the meridional and 71 is the prime vertical component of the
deflection of the vertical, and y is normal gravity on the ellipsoid
linearly attenuated (0.3086 mgal/m) to account for the height of
computation point above the ellipsoid (Rapp, ibid., p. 8).

4. % **- ~4*.~**4 
.- ..
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4.3 Numerical Investigations

4.3.1 The Data

For our numerical tests we used the 5'x5' mean values of surface
gravity anomaly and elevation developed over a 7"x9" area in New
Mexico in Cruz and Laskowski (1984). For certain inner zone
computations required in Forsberg's (1984) prism integration program we
also used the detailed 1 km x 1 km grid point elevation data supplied
earlier (April, 1983) by the National Geodetic Survey (NGS). The
reference topography used in the residual topographic model was
generated from a set of spherical harmonic coefficients to degree 180
(tape GS140, file 15). The spherical harmonic gravity model used was
that developed in Rapp (1981b) up to degree 180, which here will be
referred to as the Rapp-180 field.

...

For immediate visualization Figure 19 and 20 show, respectively, a '"
contour map of 5'x5' mean elevations (contour interval = 50 meters) and
5°x5' mean gravity anomalies (contour interval = 5 mgals) in a portion
of our New Mexico test site. The anomalies shown are actually Faye
anomalies, i.e., terrain-corrected anomalies (ibid., Figure 14). The Faye
anomaly is expectedly even more correlated with elevation than the
terrain-uncorrected free-air anomaly (Moritz, 1968, p. 33). This
correlation is clearly observed from Figures 19 and 20, where the
contour intervals were chosen to be in a 1 m to 0.1 mgal ratio to
approximate the standard correlation factor of 0.1119 mgal/m.

If now we remcve the influence of topographic masses by
subtracting the Agt of (4.28) from the free-air anomaly or, the same
thing, by subtracting the first term of (4.28) from the Faye anomalies,
then we should see a considerable smoothing of the anomaly field. This
is shown in Figures 21 and 22. In Figure 21 the entire topographic
masses (i.e., h8=0 in (4.28)) were removed, while in Figure 22 only the
residual masses (hs=reference topography to degree 180) were removed.
The field shown in Figure 21, associated with the subtraction of (27rGph
- tc) from the free-air anomalies, is called refined Bouguer anomalies in
Heiskanen and Moritz (1967, Sec. 3-3). Figure 22 additionally reflects
the removal of the Rapp-180 field as age, so that the figure actually
shows the residual anomaly AgO of (4.18). In effect, Figure 22 can be
obtained by subtracting from Figure 21 the quantity (Agg - 21rGphB).
Since the latter quantity can be interpreted as a reference Bouguer
anomaly (see ibid.), then we can call the field shown in Figure 22 as a
residual refined Bouguer anomaly field.

Figure 21 is indeed much smoother than Figure 20, although one can
observe the well-known large negative bias of Bouguer anomalies
associated with the removal of the entire topography but not its
isostatic compensation. Figure 22 avoids the bias because positive and
negative masses were removed or, as an alternative interpretation,
because relatively high frequency topographic masses (beyond degree
180) which have only small isostatic compensation were removed.

F"++%

• 0 ~4.



77

Ln/

40 4) V )

x 0

ri)

0 *-

'pl

4. -.~ 4

M) XJ

0'~

gani it

4I



78

7f-,'- -4

z 0 la-o

~orr. x &n-

r~ .6j

.4 -Im2

t.to

ccn± 0 0 4j



* 79

Since Figure 22 reflects the removal of the lower 180 harmonics and
the influence of topographic masses beyond degree 180, the field shown h
can be interpreted as the residual isostatic field discussed in Section
4.1 (See Table 4.1). In reality, Figure 22 also contains the errors of the
Ag* and Agt fields (see (4.18)). Nevertheless, one can see the degree of
smoothness of Figure 22 compared with Figure 20. In fact the RMS
anomaly value reduced by 42%, from 26 mgal for the field shown in
Figure 20 to 15 mgal for the field shown in Figure 22, considering all
anomaly values in the 7"x9" test area described in Section 4.3.2. This
provides a good real data confirmation of our earlier general study that
the topography-unreduced field (Figure 20) might require a
representation to degree n=2500 (5'x5' resolution) for low-altitude
disturbance computations, whereas the topography reduced field might
need only a representation to n=620 (17"x17' resolution) - see the
discussions related to Figures 15 and 16.

4.3.2 The Test Area

For testing the combination of the various models discussed in * *1.

Section 4.2, we used gravity and elevation data in the 7"x9" New Mexico
area shown in Figure 23. The figure shows the reference topography to
degree 180 with a contour interval of 50 meters. The figure also shows
five symmetrically arranged points in a 1*xl" area, these points being
foot points of five vertical trajectories (i.e., lines) along which test
computations were performed. Test computations were performed at
points along the trajectories, at altitudes 5, 10, 30, 100, and 500 km
above the ellipsoid. The locations of the five trajectories were chosen
in an area of significant gradient of the disturbance component fields.
To show the gradients, the 3"x3" area marked off in Figure 23 was
taken for plotting the disturbance components at altitudes 0 km and 30
km using a contour interval of 5 mgals. The plots are shown in Figure..-
24. The disturbance components were plotted from 0125x(O.25 grid point
values generated from the Rapp-180 field using the modified Rizos
program mentioned in Section 4.2.

Figure 25 shows the labeling that we will use to identify the test
points at a given altitude. Also shown is the area (Area I) which
contains the 5'x5' blocks where the integrated kernel form (Rapp,
1966b) - was used in the numerical integration of the integral model. The
integrated kernel form avoids the large errors of the center-point
kernel evaluation, for integration elements close to the computation point
at low altitudes. Figure 25 also shows the area (Area II) where rigorous
values of Agt from Forsberg's program were used in the residual . '.
topographic model. Outside Area II, it will be shown in the tests that it
is sufficient to approximate Agt by the first term of (4.28).

- * ..-.. .,
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I: Area containing 16x16 5'x5' blocks where integrated
form of kernel is used in the Direct Integration Method.

II: Area containing 2424 rigorous valup-s of 5-xS'
RTM-anomalies, gt.

Figure 25. Test Points and Inner Zone Data Configuration.
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4.3.3 Description of Tests and Numerical Results

Below we describe the various tests conducted using the five
vertical trajectories through the points A, B, C, D, E shown in Figure
25. Again, the altitudes tested were 5, 10, 30, 100, and 500 km. To
simplify the numerical presentation we give for each particular test and
particular disturbance component, the numerical results for only one
chosen trajectory omitting the results for the remaining four
trajectories. The one trajectory to be presented will be the one
showing the greatest sensitivity to the particular test, that is, the one
showing the largest absolute values for numerical results. We now
describe the various tests, with the results for each presentation
trajectory being shown in Table 5 at the end of the test descriptions.

Test 1. Remote Zone Error of Direct Interation Method for n=2 to 180

The Rapp-180 field was first evaluated to provide "true" values of
disturbance components in space using (4.15)-(4.17), and to provide
5'x5' "data" values of anomalies on the ellipsoid, in the 7"x9" test
area, using (4.13). The data values were then input into the direct .
integration method using (4.19)-(4.21) to yield computed values in
space. The true values were subtracted from the computed values
to yield the errors for this test. The differences are caused by the
neglect of the anomaly data outside the data area. -9

Test 2. Remote Zone Error of Direct Integration Method for n=21 to 180

Test 1 was repeated this time using only harmonics from n=21 to
180.

Test 3. First Derivative Effect for the 180-Field

5'x5' values of the second term in (4.12) were first computed in the
7"x9' test area using the Rapp-180 field and the 5'x5' mean values
of elevations (not the reference elevations to 180). The resulting
values were then input into the direct integration method using
(4.19)-(4.21) to yield the first derivative effects for this test.

Test 4. Sensitivity of Field Beyond Degree 180 to Height Error

The spherical harmonic gravity anomaly Ags from the Rapp-180 field
and (4.12) was first subtracted from the originally given surface
anomalies Ag, to form 5'x5' values of (Ag-Ag') in the 7"x9" test
area. These values were then input into the direct integration
method using (4.19)-(4.21), first with h.=0 then with h.=l.5 km in
(4.25), where h,=l.5 km was an approximate mean elevation in the
test area (see Figure 23). The sensitivities for this test were then
formed by subtracting the disturbance results for the case when

. . . . .- . .. ' -. " - - - ." - .1
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hm:O from those for the case when h.=1.5 km.

Test 5. Residual Topographic Model Outer Zone Effects

5'x5' mean elevations and 30"x30" grid point elevations of the actual
topography, along with the reference topography to 180, were input .,...
into Forsberg's prism integration program to compute the
disturbance components 6 rt , 6irt, 6)t at altitude. The standard
crustal density of 2.67 g/cm3 was used. Two versions were
computed, one using data in the entire 7"x9" test area, and the
other using only data inside a 2"x2" area centered at the
computation points (Area II in Figure 25). The results for the 2"x2-
area were subtracted from the results for the 7"x9" area to yield
the desired outer zone effects (disturbances) for this test.

Test 6. Error of Using Alt = 2rGp(h-ho) as a Simplified Residual
Topographic Anomaly in the Outer Zone

5"x5" mean values of Agt-=2wGp(h-h2) were first generated in the
outer zone, outside the Area II of Figure 25 but inside the 7"x9"
test area, using 5'x5' values of elevations h and reference
elevations ho to degree 180, and using 2Gp=0.1119 mgal/m associated -
with p=2.6 7 g/cm3- These data in the outer zone were then input
into the direct integration method (4.19)-(4.21), with h.=l.5 km in
(4.25), to yield the spatial disturbances implied by the outer zone
Ajt-data. From these disturbances, the rigorous ouster zone
disturbances from Test 5 were subtracted to yield the errors for
this test.

°J

Test 7. Sensitivity of the Residual Topographic Field to Height Error

Rigorous values of 5'x5" residual topographic anomalies Agt on the
earth's surface were first generated inside the 2"x2" inner zone,

Area II in Figure 25, by direct prism integration of residual
topographic masses using Forsberg's program (see comment above
(4.28)). Again, the input data were 5'x5' mean elevations and
30"x30" grid point elevations of the actual topography, reference
topography to degree 180, and p=2.6 7 g/cm5 . These Agt values in
the inner zone were combined with the Aft values developed for the
outer zone in Test 6. The combined 5"x5' data in the 7"x9" area
were then input into the direct integration method (4.19)-(4.21), first
with h,=O then with h.:l.5 km in (4.25), where h.:l.5 km was an
approximate mean elevation in the test area. The sensitivities for
this test were then formed by subtracting the disturbance results
for h.=0 from those for h.=1.5 km.
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Test 8. Sensitivity of the Residual Integral Field to Height Error

5'x5' values of the residual integral model anomalies Ago from (4.18)
were first formed in the 7"x9" test area, by subtracting from the
original surface anomalies 4g the spherical harmonic anomalies Ags

from (4.12) and the residual topographic anomalies Agt (inner zone)
and Agt (outer zone) from Test 7. Again, for computing Agg the
Rapp-180 field and 5"x5' mean elevations of the actual topography
were used. The Ag0-data were then input into the direct inte-
gration method (4.19)-(4.21), first with h,=0 then with hm:1.5 km in
(4.25), where h.:1.5 km was an approximate mean elevation in the
test area. The sensitivities for this test were then formed by
subtracting the disturbance results for hm:O from those for h.=1.5
km.

Test 9. Error of the Direct Integration Method in Representing the
Residual Topographic Field

5'x5' values of residual topographic anomalies on the earth's
surface were first formed in the 7"x9" test area, from the Agt
(inner zone) and Ali t (outer zone) values from Test 7. These values
were then input into the direct integration method (4.19)-(4.21), with
h.=1.5 km in (4.25), to yield the spatial disturbances (6t)D, (6 4 t)D,
(6 X)t)O implied by the integral representation method. Corresponding
rigorous values 6tr, 64t, 6,t of the disturbances were generated
from Forsberg's prism integration program, using 5'x5' mean
elevations and 30"x30" grid point elevations of the actual
topography along with reference topography to degree 180 and
P: 2. 6 7 g/cm3 " The errors for this test were then as the differences
[(6 t)D - 6t], [(6t)O - 6t], and [(6Xt) -6Xt].

4.3.4 Discussion of Numerical Results

Test 1 shows that the remote zone errors caused by the omission of
anomaly data outside the 7"x9" test area are significant.

Comparison of Tests I and 2 shows that a large part of the remote
zone errors are caused by very long wavelength harmonics between
degrees 2 to 20, with the errors caused by degrees 21 to 180 being
below 1 mgal but can still be considered to be significant biases. The ;-I
characterization of the errors as biases comes from the fact that the
errors attenuate very slowly with altitude. Extrapolating the results of
Tests 1 and 2, it can be expected that the remote zone errors caused by
harmonics above degree 180 are negligible. This expectation also follows
from the analysis of truncation errors as presented in Chapter 3. This
means that it will be sufficient to use a spherical harmonic model to
degree 180 (as we did in our tests) as a complementary model to account
for remote zone data outside the 7"x9" test area.

IVA
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Table 5. Maximal Values (mgals) of the Different Quantities Being
Computed in Teats 1 to 9 of Chapter 4 (see text).

4%

TEST POINT 5 ko 10 o 30 k 100 kw 500 k-

6, A 7.16 7.20 7.37 7.15 6.35

1 6; A -3.34 -3.32 -3.27 -3.08 -1.65

6) A -3.20 -3.18 -3.09 -2.78 -2.13

6,. A -0.48 -0.12 -0.20 -0.11 -0.07 1,,
2 6T A 0.29 0.29 0.30 0.27 0.22

6,\ A -0.80 -0.79 -0.75 -0.55 -0.23

6,. A -1.35 -1.19 -0.75 -0.20 -0.02

3 6;F C -0.50 -0.43 -0.26 -0.07 0.00

6X D 0.60 0.53 0.34 0.08 0.01

6, D -2.84 -1.64 -0.31 -0.03 0.00

4 6; C -3.29 -i.88 -0.51 -0.02 0.00 V.

6, A 2.54 1.53 0.24 0.00 0.00

6,. D -0.21 -0.41 -1.05 -1.32 -0.36

5 6V  B -1.72 -1.71 -1.62 -1.17 -0.16

6A D -2.18 -2.14 -1.75 -0.48 -0.07

6r D -0.20 -0.27 -0.43 -0.33 -0.06

6 61; B -0.33 -0.33 -0.31 -0.20 -0.02

6, D -0.69 -0.67 -0.51 -0.09 0.00

6r D -2.87 -1.74 -0.29 -0.01 0.00

7 6; C -3.71 -2.19 -0.64 -0.02 0.00

6) A 1.35 1.29 0.27 -0.03 0.00

6r A 1.69 1.02 0.24 0.01 -0.01

8 6; E -0.76 -0.20 0.02 0.00 0.00

A 1.18 0.24 -0.02 0.02 0.00

6, D -3.32 -1.96 -0.30 -0.29 -0.08

9 6; B -3.85 -2.98 -1.58 -0.33 -0.22

A 8.18 4.85 1.83 0.34 0.00

,- -
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Test 3 shows that for the purpose of subtracting the spherical
harmonic model to degree 180 from surface gravity anomaly data, it is
not sufficient to simply use the values of the spherical harmonic model
on the surface of the ellipsoid. Rather, the first radial derivative of
the field has to be used also as in (4.12) to account for the varying
heights of the surface points above the ellipsoid. Tests not shown here
indicate that the effects of the second radial derivative are one order of
magnitude below those of the first radial derivative, and thus such
effects can be neglected. Again, we point out that the evaluation of the
spherical harmonic model using the truncated Taylor series (4.12) is a
means to control the amount of computer time required for evaluations - -

of the model on a dense grid of surface points.

Test 4 shows that after subtracting the spherical harmonic model to
degree 180 from the original field, the residual field is still such that it
makes a significant difference in the direct integration method whether
the boundary values are assumed to refer to the geoid or to some mean
elevation in the area. This significant sensitivity to data height error
is noted for altitude below 30 km. This significant sensitivity is
expected since the field roughness has not been removed through the
subtraction of the 180-field. The field roughness directly causes high
sensitivity of the modeling procedures to height errors, since high
frequency field irregularities are drastically affected by upward or
downward continuations. Even the use of a mean elevation surface as
assumed reference level for the data is, of course, in error since the
anomaly data actually refer to the physical topography which is not an
equipotential (level) surface. To reduce the error it is desirable to use
the residual topographic model as complementary model to smooth the
field.

Test 5 is cf interest to show the effects of residual topographic
masses outside the 2"x2" area surrounding the computation points.
These outer zone effects were, on the average, 12% of the total residual
topographic effects at our computation points.

Test 6 was used to see if the approximate residual topographic
anomaly Agt of (4.29) can be used in place of the rigorous Agt outside
the 2"x2 ° area surrounding the computation points. The resulting
errors from this test can be considered tolerable, since these errors are
actually the effect of two types of errors: one is the error of
approximating Agt by &gt, and the other is the error of the direct
integration method in representing the residual topographic field (more
about this in Test 9). It is important to be able to approximate Agt by
Agt in some outer zone because, for example, the computation of rigorous
values of Agt for the entire 7°x9" test area would lead to 84x108=90 7 2
values which would be prohibitive to compute using Forsberg's prism
integration program. The computation of a 24 x 24 array of rigorous
Agt-values inside the 2"x2" inner zone area already took about 10
minutes of CPU time on the OSU Amdahl system.

-.2.
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Comparing Test 7 with Test 4 we see very similar errors, supporting

the idea that most of the errors caused by varying data level occur in

the (high frequency) residual topographic part of the total field.

Comparing Test 8 with Test 4, we see significantly smaller errors forTest 8. This is due to the smoothness of the residual integral field

used in Test 8. The low sensitivity of the residual integral field with
changing data level means that now the assumption of the integral
model, namely, that the surface data refer to a single level, will produce
only small errors. It is indicated from Test 8 that at very low altitudes,
below 10 kin, we still encounter a significant although small model
sensitivity to changing data level.

Test 9 shows the magnitudes of errors that can be encountered
when using the direct integration method to model a rough field. Part
of the errors can be attributed to the inability of the direct integration

"j method to properly account for the changing level of the given anomaly

data, (i.e., to properly account for the shape of the topography).

Note that in Test 9 a value of h,=1.5 km was used in (4.25). In a
separate testing we also used h.=0, and generated the corresponding
errors as in Test 9. This was done to confirm that the use of the mean
elevation h.=1.5 km would yield smaller errors than the use of hm-O.
The statistics of the errors for h.=O and h,:1.5 km are shown in Table
6. We see a clear tendency for the mean and standard deviation of the
errors associated with h.=l.5 km to be smaller than those for hO=0 km,
so that h,,-1.5 km is the preferable value to use.

We close this section by giving Table 7, which shows the final model
values for the test trajectory through point A (Figure 25). The total
disturbance values were obtained by adding together the values from
the spherical harmonic, residual topographic, and residual integral
models. Also shown in Table 7 (row V) are the errors of the direct
integration method in representing the residual topographic field, as
explained in the description for Test 9. To get the disturbance values
for the case when the residual topographic model is not used as a
complementary model, we have to add corresponding numbers given in
rows IV and V of Table 7.

J. "
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Table 7. Values of the Disturbance Components in Space as Evaluated

from the Models of Chapter 4, for the Test Point A (4 = 33"N,
X = 254.5E). Row V gives the errors of the direct integration
method in representing the residual topographic model (seeTest 9). Units: mgals.

MODEL 5 km 10 km 30 km 100 km 500 k-

6 26.31 23.41 14.56 1.60 -5.03

(spherical 86 8.52 8.00 6.41 3.88 1.48harmonic

model) 6) -3.43 -2.80 -1.00 1.14 1.83

r6 t  47.18 39.62 17.48 -0.64 -0.49

(residual t
toprapic 6; -5.00 -3.92 -1.77 -0.64 -0.11topographic "...

model) 6 -22.50 -14.59 -1.73 0.48 -0.07

I6 -12.50 -7.72 -0.71 2.60 0.67

(residual D
integral 6; 4.97 3.46 2.01 1.31 0.20integral ""'

model) 6 -4.97 -2.52 -2.09 -1.64 -0.08

IV6 60.99 55.31 31.33 3.56 -4.85
...-

(total) 6; 8.49 7.54 6.65 4.55 1.57

6\ -30.90 -19.91 -4.82 -0.02 1.68

(6r) - 6r 0.35 -0.68 -1.25 -0.62 -0.09

(6;)-" 6; -1.28 0.01 0.19 -0.05 -0.02

to t(6x)- 6 8.18 4.85 1.83 0.34 0.00

% . . . . . . . . .
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5. DISCRETE APPROACHES TO MODELING THE SPATIAL DISTURBANCE
VECTOR

Discrete approaches to modeling the external gravity field are based F7

on solving the so-called Bjerhammar problem. Bjerhammar (1964)
formulated the modeling problem in this way: given a finite number of
gravity anomalies at points of a non-spherical surface, find an analytical
approximation to the disturbing potential T in space such that the given
anomaly values are satisfied. Solutions that have been developed for
the Bjerhammar problem now include possibilities to:

1. satisfy heterogeneous data types (e.g., gravity anomalies, deflections

of the vertical, gravity gradients) at the given observation points;

2. filter the data to minimize the influence of measurement errors;

3. remove systematic influences that make T non-harmonic, such as
time dependent variations, reference system errors in orientation
and geocentricity, and station position errors (Tscherning, 1981).

Well-known solutions presented for the Bjerhammar problem are

based on collocation, which is a numerical method for fitting an
analytical approximation of a function to a finite number of given
functionals of the function (see Moritz, 1978b; see also Moritz, 1978a, p.
32, for a simple example of collocation). In fact, the Bjerhammar problem
as stated above reads as a collocation problem. Details of the
application of collocation in solving the Bjerhammar problem have been
presented under different analytical structures. Original presentations
are given by Krarup (1969) using Hilbert spaces, Moritz (1970a) using
Wiener prediction and filtering, and Bjerhammar (1975) using Dirac .. ,

functions. Extensive treatment of various aspects, both for practical
application and for deeper analytical understanding of collocation, are
given by Moritz (1980). Review papers dealing with the theory of
collocation are given by Moritz (1978a, 1978b) and Bjerhammar (1978).
Tacherning (1981) gives a review paper comparing the theory and
computational properties of different gravity field representations,
including collocation and its combination with other methods, and
summarizing also the results of previous numerical investigations by
various authors.

Of special interest are the numerical investigations of Sjoberg
(1975, 1978), who used both model computations and limited real data
computations to predict gravity anomalies and deflections of the vertical

91
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on the surface of the topography, starting from given surface gravity .-

anomalies. He concludes that similar prediction results are obtained
from the use of different base functions in the collocation procedure
(details of the procedure are given below), provided that the radius of
the internal sphere is properly chosen for each base function. In this
chapter we will investigate the validity of this conclusion for gravity Fr
disturbance vector computations in space.

Of interest to us also are the numerical investigations of
Katsambalos (1981) who performed simulation studies, precisely on the
computation of the gravity disturbance vector in space from surface
gravity anomaly data. He used model values using the "Molodensky I..
mountain model" (Molodensky et al., 1962). Key conclusions of
Katsambalos were questioned by Tscherning (1983a) with regards to the
least squares collocation approach, and by Bjerhammar and Sjoberg
(1982, private communications) with regards to the so-called Dirac
approach. Both the least squares collocation and Dirac approaches are
collocation techniques, as we will detail below. The results of our own
numerical experiments, to be presented in this chapter, support the
validity of the questions raised. Specifically, our results show the
following:

1. the least squares collocation and Dirac approaches can give about
the same quality of results if the free parameters of the base .function used (degree variances, radius of the Bjerhammar sphere)

are properly selected.

2. the conclusions of Katsambalos based on his Tables 9.3 and 9.4
(ibid., p. 116), namely, that the "Dirac approach should not be used
for the interpolation of gravity anomalies on the surface of the
earth, unless the data is sufficiently dense to ensure an accurate
prediction", should be modified. His Table 9.3 was incorrectly
computed, with the correct table being given in Sjoberg (1978, p.
68, Table 8.3). His Table 9.4 represents only a very specific
example, and cannot be generalized to form the conclusion that the
Dirac approach tends to predict zero values in between the data
points. The conclusion should rather be, that the Dirac approach
can be used for interpolation provided the radius of the internal
sphere is properly selected. The large prediction errors noted by
Katambalos (ibid., p. 113) when doing real data computations over
Canada was due to the relatively large spacing between the given
data points (see Figure 28 of this chapter), and not due to a
deficiency in the least squares collocation or Dirac prediction
methods as Katsambalos suggested. We will present additional
computations using the mentioned real data in Canada.

5.1 The Collocation Procedure

We already mentioned that the word collocation denotes the
construction of an approximation to a function by fitting an analytical

J4
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approximation of the function to a finite number of given functionala of .e*
the function (see Moritz, 1978a, 1978b, for example). In gravimetric
geodesy the fundamental function to be approximated is usually the
disturbing potential T, and the given functionals are (for example)

gravity anomalies Ag, deflections of the vertical j and qb and height
anomalies t, which are all related to T through well-known linearized
relations in spheri.al approximation: 5

_. OT T 2Ag = *Tr (5.1),...
or r• .'

1= T (5.2)

- 1 OT (3
77 r? cos ON (5.3

To briefly explain the use of collocation in constructing an

approximation to the disturbing potential T in space, we use the
presentation of Moritz (1978b). It is first postulated that T can be
approximated by a function f in the form:

k
(5.4)

j=1T(P) = f(P) = lb 1 t~ P,(.).''

where

P computation point in space

bj constant collocation coefficients to be determined

#j a priori selected base functions 4-!
It is considered that T is harmonic outside the earth's masses, and to ..
enforce harmonicity on the approximating function f, the selected base

functions are harmonic:

V'A4~rO,
0 ,(5.5)

where A denotes here the Laplace operator. For the determination of
the collocation coefficients b1 it is assumed that errorless values of t

are given at k spatial points on or above the earth's surface, where the
' are linear functionals (Moritz, 1980, p. 36) of T or f:

%°1

....................................................
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Ii = LiT Lif , (5.6)

where L, denotes the linear operation to transform T (or f) to J,. For
example, (5.1) is in the form (5.6) with

81 = Ag, (5.7)

Li- + (5.8)

The collocation condition is now the exact reproduction of the given Ij
by the function f, i.e., substituting (5.4) into (5.6):

k

U b i L #j (Pl) it (5.9)
j=1

In matrix notation, condition (5.9) becomes:

Bb=a , (5.10)

where the elements of the B-matrix are:

Bij =  Li #j (Pi) , (5.11)

i.e., the operator L, is applied to the base function * and the result
evaluated at the point P, where A, is given. From (d.10) we formally
get the collocation coefficients:

b B-1I (5.12)

In actual implementation, (5.10) may be solved for b by iteration or by a
linear equation solution, instead of the direct matrix inversion in (5.12).

Knowing the collocation coefficients b , (5.4) gives the required
approximation to T. Any other functional LT of T can be found in space
by applying the operator L to (5.4):

.-..... , ,-. ,-..... -. ,,-. ,..~~~~........................... ......................... .-'. .. ,...-.-..".,
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LT(P) Lf(P) L bi L#j (P) . (5.13)
j=1

For example, in computing the components of the gravity disturbance
vector in space we have the linear relations:

6r =  r (5.14)
Ior

-V = r (5.15)

6X 1 AT(
r cos V (5.16)

Note that (5.13) is also of the form (5.4), with the fundamental function
T replaced by the derived function LT, and the fundamental base
function #j(P) replaced by the "propagated" base function L#j(P). This
completes our brief account of the use of collocation in approximating T
and quantitites derived from T (see (5.4) and (5.13)).

An important issue in the above collocation procedure is the choice
of base. function. In this report we will examine two major approaches
in selecting the base function, namely, the Dirac approach (Bjerhammar,
1975; Sjoberg, 1978) and the least squares collocation approach (see,
e.g., Moritz, 1978b). We realize from the geodetic literature on
collocation that a set of equations purportedly defining one method can

in certain cases be interpreted as defining another method. Examples of
this are found in Sjoberg (1978, pp. 9, 12), Tscherning (1983a),
Lelgemann (1981), Brennecke and Lelgemann (1984), Bjerhammar (1975,
1978). For our purposes we will distinguish between the Dirac approach
and least squares collocation approach in a simple way, by specifying
the equations we are using under each method. Then we will conduct
numerical experiments using the equations and compare the results. The
reader interested in a theoretically refined distinction between the Dirac
and least squares collocation approaches, and in their relationship to
each other and to other models, should consult the references cited and
Moritz (1980, starting from Sections 12, 30, 38).

5.2 The Dirac Approach to Collocation

The Dirac approach to collocation has been interpreted as a
generalized point mass modeling (Sjoberg, 1978, p. 13; see also Forsberg,
1984, pp. 24-27; and Brennecke and Lelgemann, 1984). In this

--7.. : ::
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with

cos =pj sin +p sin Oj + cos *p cos Oj cos (Aj - Ap) , (5.19)

*, X ... geodetic latitude and longitude.

The base function (5.18) is in the form of the kernel function E used in
the Brovar solution mentioned earlier (see Moritz, 1980, p. 366).

Various choices of the k. in (5.18) result in various further
interpretations of the quantities Uj* appearing in (5.17). To see this we
first create from the impulses u j* a function uS on the Bjerhammar
sphere (Bjerhammar, 1975, (3)): -'K'-.- * . '

k
u*(Q) 4wRel > uj* 6(Q-j) , (5.20)

j=1

where

Q arbitrary point on the Bjerhammar sphere

6(Q-j) Dirac delta function (see, e.g., Moritz, 1980, pp.
27-30). This function has the characteristics that
6(Q-j)=0 if QWj, and that the integral of 6(Q-j)
is equal to one for every neighborhood of point
j how ver small this neighborhood is chosen to be.

Then, (5.17) can be rigorously written in the integral form (compare
Bjerhammar, 1975, (1)-(5a) or Katsambalos, 1981, (5.33)-(5.35):

T(P) "f(P) f u*(Q) base(T(P), u*(Q)) de(Q) ,5.21)

C1

where the integration is carried over the unit sphere a and the integral
kernel is, from (5.18): WA

base(T(P), u*(Q)) Re kn 2 tnl Pn(COS*"-) (5.22)
n=2 ''.

From the theory of eigenvalues and eigenfunctions of isotropic integral
operators (see, e.g., Jekeli, 1980) we can write from (5.21) and (5.22) the

I.' -.
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following relation between the nth surface harmonics of T* and u* on
the Bjerhammar sphere:

* RR k, u(5.23)n-i

(The "*" denotes reference to the Bjerhammar sphere). The last equa-
tion reveals directly what type of quantity the u* is, in relation to the
disturbing potential T. For example, if k.--1 is chosen then the spectral
relation (5.23) reveals that the uS being solved on the Bjerhammar
sphere is the gravity anomaly (see (5.24) below); from (5.20) the uJ* in
this case can be termed "gravity anomaly impulses." We have from
(5.23):

Ag*= kn un* . (5.23a)

In this report we will numerically experiment on three types of
choices for the k, in (5.22). These choices will be those that imply the
solution on the Bjerhammar sphere of the gravity anomaly Ag*, the
single-layer density p*, and the double-layer density 75. More details
on these quantities follow:

1. the aravity anomaly Agt. Here, the Ag * are gravity anomaly L
impulses. This is the original system used by Bjerhammar (1964), and
for which numerical experiments were performed by Sjoberg (1975, pp.
86-89; 1978, pp. 64-69) and Katsambalos (1981) under the label of "Dirac
approach." From Heiskanen and Moritz (1967, p. 89) we have the
spectral relation between T* and Ag*:

Tn*= R Ag* (5.24)

n-1

Comparing (5.23) and (5.24) the choice of k, in this case is:

kn(Ag*) 1 . (5.25)

The base function (5.18) then becomes the extended Stokes function,
with closed form (see ibid., (6-30), (6-45):

base(T(P), Agj*) =Rit [ + 1-3D- t cos* (5 + 3Sn 1- t cos+D]

(5.26)

where I
=.4

t" RAg
(5.27)

rp

• o* ~. ~ ~ -8 . -.. -
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rp R+hP (R 6371 km.; hp height of P above the geoid) (5.28)

CO CoS I cos (see (5.19)) (5.29)

D' 1- 2t COS V + t 2  (5.30)

2. the single-layer density u*. Here, the ujare point masses.
This system (of Dirac approach to collocation) in discussed in Sunkel
(1981b, 1983b). From Sunkel (1981b, (2.5)) we get the following spectral
relation between T* and ;s*:

= Rn+) (5.31)*1

Comparing (5.23) and (5.31) the choice of kn in this csqqe is:

k ~(n-1) (.2no* RF2 (2n+1) (.2

The base function (5.18) becomes simply the reciprocal distance function,
with closed expression (Heiskanen arnd Moritz, 1967, p. 35):

base(T(P), Aj* = [' Pn(cos 'O 1 (5.33)

where

J2 r + R: 2 Re rp cos .p (5.34)

Note that for exact agreement of (5.18) and (5.33) we Should start the
summation in (5. 18) from n0O.

3. the double-layer density Ts. Here, the 7i*are point dipoles.
The concept of point dipoles, and in general multipoles, is discussed in
Meisel (1981, pp. 184-190). The base function corresponding to the use
of multipoles on the Bjerhammar sphere can be expressed as a
derivative of (5.33) with respect to Re (ibid., 7.7)):

.2..j ~ ~j+ 1 P"(cos 'OPJ)] or j' [J](5.35)

#Re"Re r TR-- (i
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where the order N of differentiation is the order of the multipole, e.g.,
N=1 for a dipole and N=0 for a monopole (i.e., a point mas). Using
(5.35) with N=I, we get the following base function for our dipole
system, in series form:

base(T(P), Uj*) n Re n+1 P.(cos -*pj) (5.36)
R9 n1 rp)n=1

and in closed form (differentiating (5.34)):

base(T(P), j*)= r (5.37)

Comparing (5.18) and (5.36) gives the implied k,,:

n(n-1)
k n(P) = R*3 (2n+l) (5.38)

Using (5.38) into (5.23) we get the spectral relation between the
disturbing potential T* and the double-density layer Z on the
Bjerhammar sphere:

T* n 7;", (5.39)
= R92 (2n+l) . (5.39

We have now completed the description of the various Dirac systems
that we will use in our numerical experiments. These systems have been
defined through particular choices of k. in the base function (5.18). In
principle, the choice of k, in (5.18) is arbitrary, provided only that
(5.18) converges and that we can solve for the collocation cefficients b-
in the collocation formula (5.4) (details of the computation of the bj are
given later). We have chosen the ks-expressions (5.25), (5.32), and
(5.38), leading respectively to the gravity anomaly impulses, point
masses and point dipole systems, because the said systems are relatively
well-known in the geodetic literature. More numerical experiments are
needed on these systems, especially using real data and computations in
space.

Note that both the kn(Ag$) of (5.25) and k,(P*) of (5.32) are
proportional to a constant for n - , whereas the kn(P2) of (5.38) is
proportional to n for n -+ , Adopting the terminology of Lelgemann
(1981), the order of k.(Ag*) and k((p*) are equal to zero, whereas the
order of k,(;*) is equal to 1. The order of k n in n, denoted by 0(k,),

". .. . - , 'K' ; , . . . , . . .. , .. . . . . . . . . " .. . ..... ; . '..'.." .. . ,- .. .. .. .. ... '. . . .... ..
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is defined as "the highest power of n within the explicit expression for
k,, e.g., for k, = (2n+1)/(n+1) we obtain 0(k,) =0" (ibid.). Analogous to
the empirical findings of Lelgemann in his interpolation problems, we
also found that the 0(k,) strongly influences the optimal radius Re that
should be chosen for good collocation results, and that systems with the
same O(k n ) have about the same optimal Re. The Ag*- and ;A*-systems
required about the same depth to the Bjerhammar sphere, these two f
systems having the same 0(kn). The T&-system required a deeper
Bjerhammar sphere, because this system had a larger 0(k.) than the
other two systems. From (5.23a) one can see that the larger the 0(k,,)
the smoother (less high frequency energies) the u* relative to Ag*, with
0(kn)=O implying the same smoothness for u* and Ag*. One should
remember that spectral multiplication by n implies amplification of high
frequency energies of a function.

Let us now turn to the computation of functionals of T, from the
general representation (5.17) of the Dirac approach. In accordance with
(5.13), a functional LT of T can be found by applying the operator L to
(5.17):

k
LT(P) Lf(P) = uj* L base(T(P), uj*) (5.40)

j=1

From (5.40) we can write:

base(LT(P), uj*) L base(T(P), uj*) (5.41)

The last equation expresses a "propagation of base function," analogous
to the propagation of covariance functions well-known in least squares
collocation (see Moritz, 1980, p. 86). As an example of (5.40) and (5.41)
let LT(P) = Ag(P) and uj* S gj*; using (5.40), (5.41), and the operator
(5.8) for Ag we have:

k
Ag(P) = igj* base(Ag(P), Agj*) , (5.42)

j=1

where the propagated base function is:

base(Ag(P), agj*) - base(T(P), Agj*) , (5.43)

* , o*
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and the fundamental base function base(T(P), Agj*) is given by (5.26).

In the following we show the propagated base functions (5.41) for our
gravimetric quantities of interest (i.e., for LT--Ag, 6,, 5, and 6A), and
under our various uj*-systems (i.e., u 1 *=Agl*, Pj*, ;l*).

1. Agi*-system. Formally we can apply (5.41) to get the propagated
base functions for this system. However, we already know these
functions to be the Poisson kernel for the upward continuation of
gravity anomalies (Heiskanen and Moritz, 1967, sec. 2-15), and the
kernels for the "direct method" of horizontal and radial disturbance
computations (ibid., sec. 6-4). We have:

base(Ag(P), Agj*) - t2( ., (5.44)

base(5r(P), Agj*) t2  + + 1 -t6DDD

-t cos Y 13 + 6 n 1 - t cos + D.45)

{base(5(P), j*)}{Cosa}
= t 3  sin yi + '

! base(SX(P), Agj*) sin a

6 1 - t co - D 3 n1 -t cos DI"

+cos D8 3 - • (5.46)
D D sin 2  2

In (5.46) a is the clockwise azimuth from North, from the projection of P
on the Bjerhammar sphere to the point of Agj*. We have (Rapp, 1966b,
p. 17):

CO ao COS = J cocos Op sin*. - sin #9 cos *l cos(Xj - Xp)
co a c sin (5.47)

sinn

SCOS *l sin(> - XD) .(5,48) 
-''

2. ,*-system (Point Masses). For this system we need to apply
the operators in (5.1), (5.14), (5.15), (5.16) to the fundamental base

-"." -" -V-.

-°° 
... a .,5 

-A
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function (5.33) to obtain the propagated base functions. The results
are:

1 (I - t cos 1  2(,aeagP rp12 03 - ;(4.49)

1, 2 D3 (5.50)

bae(vP)' J) =I o = t sinD (5.51) -'"'":".

J 1rp 2 D 3
base(6X(P), )Aj*) sin ..

In deriving (5.51) we have used (Heiskanen and Moritz, 1967, p. 234):

OV -cosci; -cos sin . (5.52)

3. Ri*-system (Point Dipoles). Again we apply the operators in(5.1), (5.14), (5.15), (5.16), this time to the fundamental base function
(5.37) to obtain the propagated base functions for this system. The
results can be written as follows:

3 cos 0 cos p- cos -0 2 cos ebase(Ag(P), Tij*) = LI32(-3rp D (5.53)

3 cos e cos 1 ( cos
base(6r(P), T = r= - D ; (5.54)

base(3(P), 1 1 3t cos .

rI 1) (5.55)
base(6X(P), 7Aj*) sin rp .

where

cos .t
Cos e c (5.56)

1 - t cos ..cos D (5.57)

r!!!!

.. . . .. . . . . . . . . . . . . .
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Since the fundamental base function (5.37) for the point dipole system
has been found by differentiating the base function (5.33) for the point
mass system with respect to the radius Re, then it follows from the idea
of base function propagation that (5.53) - (5.55) can also be obtained by
differentiating (5.49) - (5.51) with respect to Re .

Finally, to complete our description of the Dirac approach to the
collocation problem, we need to discuss the computation of the
coefficients uj* (the generalized point masses) appearing in (5.17). We
will determine the u t (j 1, 2, ... , k) using k given functionals LT of
T on the earth's suriace, and an inversion of the k x k system of linear I.-
equations arising from (5.40). In the principle the Dirac system can
handle heterogeneous data types, i.e., different types of functionals of T

such as gravity anomalies, deflections of the vertical, and heightanomalies. In principle also, a filtering of observational errors can be

built into the method by using more than k given functionals and
performing a least squares fit to the data based on (5.40).

However, our study will be limited to the use of a homogeneous data
type, the gravity anomaly, and a unique solution of k x k system of
linear equations to solve for the uj*. The gravity anomaly is still the
most common gravimetric data type, being the observable arising from
the Molodensky formulation (Molodenakii, et al., 1962) of the geodetic
boundary value problem (g.b.v.p.). Bjerhammar and Svenson (1983)
discuss the straightforward application of the Dirac approach to the
so-called "fixed boundary" formulation of the g.b.v.p., where the
observables are gravity disturbances. Regarding the use of a unique
solution for the uj* instead of a least squares solution, we believe that
it would be best to separate the problem of modeling the external field
from surface data on the one hand, and the problem of the
establishment of an optimal set of surface data on the other hand. The
latter problem can be handled in an a priori step involving editing,
prediction, filtering, and adjustment of observational data.

To solve for the collocation coefficients uj* (j = 1, 2, ... , k) from k
given gravity anomaly values on the surface of the earth, we first form
the k x k system of linear equations (see (5.40), (5.41)):

4k

Ugi 
=  Uj base(Ag,, uj*), i = 1, 2, .... k , .5.58,

where in our case, base (Agi, uj*) can be any of (5.44), (5.49), or (5.53).
Since the system (5.58) tends to be large, we employ an iterative
solution. The number of iterations required for a convergent solution
indicates the degree of stability of the equation system. We will use the
Gauss-Seidel iteration method employed also by Katsambalos (1981, p. 64).
Letting (m) denote the current iteration step, we have:

:.
.:. -° ,,-: . ., .. .. ...-.--..-..-.. ..... -. -..-. -. :.. -... . .. .. ... -... .. .-. -., ,. ... ... . ..- .. .: ..-. .. ., .. • .. .- . . . . -"..
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J.I

A, i- i
1 ~ - * ..l. iA .b+l11

where

Aij base(Agi, uj*) .(5.60)

Note from (5.59) that the most recently computed value of uj * is used at
each iteration step. The gravity anomalies implied by a current
iteration step are:

k
Ag()~ Ui*(-) A,j (i =1, 2, .. ,k) ,(5.61)1W

p j=1

and the current residuals are:

-j f(m) =Agi - Ag1(-) ,(i 1, 2,... k) .(5.62)

It is reasonable to terminate the iterations when at least one of these
conditions is met (Sjoberg, 1978, p. 68):

RM {i() 1, 2, . .,k) < 8 RHS

Max {z( i 1, 2, . ,k} < 1cnax (5.63)

where the tolerances CR04S (RMS residual), c... (maximum residual), and
0... (maximum number of iterations) are to be prescribed, for example
(ibid.):

ARM"s= 0.25 agal

=ma 0.5 ugal (.4

-2p2
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This completes our description of the Dirac approach to collocation.
To summarize, the formal procedures in the Dirac approach is to model
T(P) as the sum of potentials of k generalized point masses (see (5.17)) .,-

that are distributed on an internal sphere of chosen depth (a
Bjerhammar sphere of radius RB). The values of the "point masses" can
be solved from k given functionals LiT(P i ) of T on the earth's surface
by an inversion of a k x k linear equation system arising from (5.40) in
general, or (5.58) in our particular case. Various choices of the free
factor k n in the base function (5.18) lead to different types of "point
masses" on the Bjerhammar sphere. We decided to use gravity anomaly
impulses, the usual point masses, and point dipoles as generalized point
masses for our later numerical experiments.

In the above Dirac approach, and in the least squares collocation
approach to be discussed in the next section, it is important that we
also use the spherical harmonic and residual topographic models of
Chapter 4 as complementary models. The reason is the limitation in the
size k of the linear system (5.58) that can be feasibly solved. Since k
is equal to the number of data points, then it is important to (a) use
the spherical harmonic model to account for remote zone effects, thereby
reducing the required data coverage for the collocation solution; and (b)
use the residual topographic model to account for very detailed gravity
field information, thereby reducing the required density of data for the
collocation solution.

5.3 The Least Squares Collocation Approach

In the Dirac approach to the collocation problem, the base functions
used are the k harmonic functions base(T(P), u *) relating the
disturbing potential T(P) to each of the k Dirac impulses u j* on the
Bjerhammar sphere (see (5.17)). In the least squares collocation
approach, the base functions to use are the k empirical covariance
functions between T(P) and each of the k given functionals LjT(J) on
the earth's surface. This choice of base functions arises from adding to
the collocation condition (5.9) the condition that the RMS difference
between the approximation funciion f and the true function T be
statistically minimized (see, e.g., Moritz, 1978a, 1978b). Apart from this

statistical interpretation, the least squares collocation approach can also
be justified as a purely analytical approximation technique, in the
context of the more general "minimum norm collocation" in a Hilbert
space of harmonic functions (see, e.g., Tscherning, 1977) or in the Fl
context of the minimum norm Bjerhammar solution discussed by Sjoberg
(1975, 1978). Our interest in this study is to first give the equations
defining our use of the least squares collocation approach, then later
perform numerical experiments using these equations.

We have the following representation in the least squares
collocation approach:

.o..
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k
T(P) f(P) =  j bi cov((T(P), LjT(J)) (5.65)

j=l .4

where

bj collocation coefficients

cov(T(P), LjT(J)) empirical covariance between T(P) and the
given functional LJT at point J. This is
derived from an analytical expression of
suitable form (see (5.71)) fitted to the
covariance behavior of real data in the
area of computation.

As already mentioned, the given functionals in our case are homo-
geneously the gravity anomalies Agj on the earth's surface so that we
will use (5.65) in the form: .

k -. "

T(P) = f(P) = L bj cov(T(P), Agj) (5.66)

j= 1

Any functional LT of T can be expressed by applying the operator L to
(5.66) and employing covariance propagation (Moritz, 1980, p. 86):

k
LT(P) Lf(P) > bj cov(LT(P), Agj) (5.66a)

j=-

For the sake of our discussions the covariance function in (5.66) is now
written in the general form:

cov(T(P), Agj) dn • [__ +  P.(cos ,Pj) , (5.67..
r j r- rprj

n=2 .

where

ro chosen radius of the internal sphere (Bjerha-nar sphere)

• .- .. .. .. .. . . . .. . ... . . . -.. .. ..... ..-..- .- '- - ." , ,..." .-,,-.,.-.'
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d, non-negative factors to be chosen, function of n.

The covariance function (5.67) is in the same form as the base function

(5.18) of the Dirac approach, except for the replacement:

R9 r_2 .(5.68)rj 
..:"

The implied auto-covariance function of Ag follows from (5.67) using
covariance propagation (ibid.) and the spectral relation between T and
Ag (see (5.24):

cov(dg(P), gj) d 2 (2n+l) rr2)n+2 P,(cos *pj) (5.69)
n grprj

n=2 ':

Similarly, we obtain the implied auto-covariance function of T:

2 2n+1 (_.2]n+*

cov(T(P), Tj) =r.2 d. (n-1 )2 rprj Pn(COS 4PJ) (5.70)"2 "

n--2 r-'r.

The last equation is in the proper general form of the homogeneous and
isotropic auto-covariance function of the disturbing potential (see, e.g.,
Tscherning and Rapp, 1974):

cov(T(P), Tj) = U " rpr)l P.(cos PJ) , (5.71)

n=2 •r

where the a,, are the degree variances of T on the sphere of radius r0.
From (5.70) and (5.71):

.= r d " 2 n + l % ,
Sr

2 d 2 (n- (5.71a) .

For local applications of least squares collocation, the analytical
expression being used for the covariance function should be fitted to
the local covariance behavior of the data in the area of computation.
Usually, a fit is made to Ag-data, these being the most readily available
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data. In this case the free parameters d, and ro should be adjusted
together so that (5.69) will have the desired fit to the data. Moritz
(1980, pp. 174-177) has discussed "three essential parameters" that
define a locally fitted covariance function, namely, the variance, the
correlation length, and the curvature parameter of the covariance
function, after the function is restricted to the sphere where the given
data refer. A good fit to the variance of the data is important for
yielding realistic error estimates from the collocation procedure. The
correlation length carries information on the "smoothness" of the field,
i.e., on the spectral distribution of the total variance. The curvature
parameter, measuring the curvature of the covariance function at *-0*,
carries information about the very local behavior of the field.

I
A discussion on the determination of the three essential parametersof a covariance function from real data is given in a paper by Schwarz

and Lachapelle (1980). In our present study, where the data were
assumed errorless in order to concentrate on modeling errors, a
properly fitted variance was unimportant. Also in our study, a fit to
the curvature parameter and correlation length was not explicitly
performed unlike in the above paper. Rather, the analytical expression
for the covariance was "tailored" to real data by the criteria of yielding
the least RMS error of actual predicted values at withheld test points in
the local area (see Table 8).

For the purpose of covariance function modeling it is useful to treat
the anomalous gravity field as being generated by a white noise
u*-layer on the internal spherd of radius r.. Actual generations of
covariance functions from white noise distributions at depth is discussed -

in Heller and Jordan (1979). The covariance function of a white noise
u*-layer is (Cruz and Laskowski, 1984, sec. 6.2):

cov(u*(P), u*(J)) = fo2 (2n+1) P.(cos Vp.T) (5.72)

n=2

where a2 is the variance of a single harmonic uAm. On the other hand,
the covariance function of the disturbing potential T* on the ro-sphere
is, from (5.70):

2 2 2n+1
cov(T*(P), T*(J)) ro=  d. (n-i)2 Ps(cos op) (5.73)

n=2

Comparing (5.72) and (5.73) and using the covariance propagation '
concept, then we can conclude that T* and u* are spectrally related as -. -.

follows:

%r
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T.= .g dU (5.74)
n-1 0

Equation (5.74) defines the u* in relation to the disturbing potential,
and is analogous to equation (5.23) of the Dirac approach. For example,
if d,--o is chosen then the u* is seen from (5.74) to be the gravity
anomaly Ag*; in this case the anomalous gravity field can be interpreted
as being generated from a white noise gravity anomaly distribution on
the internal sphere. From the discussions of Sjoberg (1975, 1978), one
can also conclude an alternative interpretation of the u* of (5.74),
namely, that the (least squares collocation) solution essentially minimizes t
the variance (sum of degree variances) of the quantity u* on the
Bjerhammar sphere of radius ro. A similar interpretation in terms of
norm minimization, presented in a different way, may be found in
Tscherning (1972, 1983a).

In this report we will numerically experiment on two types of
choices for the d. in (5.74). These choices will be those that imply the
presence on the Bjerhammar sphere of a white noise distribution of (1)
gravity anomaly Ag*, and (2) disturbing potential T*. More details on
these two systems will now be given.

1. the white noise AE-system. As already mentioned the choice of
d. in this case is:

d,(Ag*) = 0o (5.75)

The covariance function (5.67) then becomes exactly in the form of the
base function (5.18) of the Dirac approach, except for the replacement
(5.68). The closed covariance expression therefore follows easily using
(5.26) and the replacement (5.68):

cov(T(P), Agj) rp 52 
a

2 1-3E- S COS'O [5 + 32n is cos""EJ

(5.76)

where
-= 2  (5.77)

rprj

E2 = 1- 2 s cos y + s 2  (5.78)

-, .'- -
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Equation (5.76) checks with the result of Sjoberg (1975, p. 106).
Similarly, we can use the replacement (5.68) into (5.44) - (5.46) to obtain
the propagated covariance functions:

cov(ag(P), AgJ) = 2 s(1-s2 ) (5.79)

cov(6r(P)a AgJ) = 2 s° 2 . + + 1 - 6E -

S s 13 + 6n + (5.80)2 i

{cov(6V(P), Aj) jO W7

cov(6X(P), Agj) sin a .-,o

6 8  3 1- s cos -E 3 1- s cos,* + E (5.81)

E E sin 2 L

The above equations all agree with ibid., p. 106. The propagated
covariance functions are to be used in (5.66a) for computing our .
functionals of interest.

2. the white noise T*-system. In this system where we have u*=T*,
(5.74) says that the choice of d, must be:

d(T*) (5.82)n-i
rO

The closed covariance expressions of interest to us can be obtained from
Sjoberg (ibid., p. 107):

cov(T(P), Ag) = 2 2rE lsE - 5 + s2l (5.83)

cov(T(P), TJ) a2 s(-S ; (5.84) '

0 E" 3
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COVAg~), g) S2 15 l-§L.!36 + 25 (585
4ro' EL E E

cov(6g(P), Agi) a= S, 
2  15 (1 s i1 + 5 3 S2

4r~ 2 E 7 Vs

(5.86)

fcov(d&(P), Agj)co CO a 3 S in Vp 5(lS2)22.

1 2 S il [5( l~s)
2cov(6r(P), Ag)E- - (5-s)

(5.87)

The white noise T*-system is the same as the "attenuated white noise"
covariance model of Heller and Jordan (1979) up to a scale factor. The
said covariance model was recently applied by Sunkel (1983a) in his
least squares collocation modeling of the geoid in Austria.

This completes our description of the two covariance systems, the
Ag*- and the T*-systems, that we will use in our numerical experiments
on the least squares collocation approach. A variety of other covariance
systems may be defined, by simply choosing different sets of dn-values
provided the resulting summations converge (see, e.g., (5.69)). It turns
out that covariance systems which have d.n-values of the same "order in
n" (see second paragraph after (5.39) for the definition of "order in n")
have the same numerical characteristics. This is the reason why, for
example, models of degree variances (degree variances are directly
related to dn; see (5.69) - (5.71a)) have been distinguished in terms of
the models' variation with n as n goes to infinity (Tacherning, 1976, p.
2; Moritz, 1980, pp. 181-186). Therefore, the two covariance systems .
that we have chosen for experimentation actually typify the numerical
behavior of two groups of covariance systems. The Ag*-system typifies
systems with order of d, equal to zero (see (5.75)), and the T*-system
typifies systems with order of dn equal to unity (see (5.82)).

We should mention that the well-known Tscherning/Rapp (1974)
anomaly degree variance model, namely:

A(n-1)
Cfl (n-2)(n+24) (5.88)

when compared with (5.69) yields a dn with order equal to -1. For this
model the only effective way to produce the very short correlation
lengths needed for local computations is to subtract lower harmonics

%,
.-.f'. ."~t,,"=. .-.. .% ." . " - % - • % ,".". ,'% % %= ..', .% ". % %,- . .. . " ....r '
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3(n<N from the covariance functions (ibid., p. 62). This removal of
lower harmonics, say for N=180, is expensive in terms of computer time.
For this reason we have avoided the use of this model. This is the
same problem that caused Sunkel (1983a) to switch to the use of Heller Ii
and Jordan's (1979) "attenuated white noise model", which is essentially
the T:-system we have discussed above. For the Ag$- and
TS-covariance systems that we will use, the correlation length is
adjusted simply by changing the radius ro of the Bjerhammar sphere in
the closed covariance expressions.

Finally, we should discuss the computation of the collocationcoefficients bj (j=l, 2, .. ,k) appearing in (5.65). An in the Dirac

approach we will solve the coefficients from k given gravity anomaly
values on the surface of the earth. We first form the k x k system of t.
linear equations from (5.66a):

Ag, =L bj cov(Ag,, A9gj), i 1, 2, , k , (5.89)
j=1

where in our case cov(Ag,, Ag1 ) will be either (5.79) or (5.85). Equation
(5.89) is analogous to (5.58) of the Dirac approach. For a direct
comparison between the Dirac and least squares collocation approaches
we will also employ the Gauss-Seidel iteration to solve (5.89). (Note that
Katsambalos (1981) used the direct matrix inversion to solve (5.89), but
employed the Gauss-Seidel iteration to solve (5.58)). The employed
Gauss-Seidel algorithm has already been given in (5.59) - (5.64), the
only change being the replacement of (5.60) by:

Aij cov(AgI, Agj) (5.90).

This completes our description of the least squares collocation --
approaches to the collocation problem.

5.4 Numerical Investigations

5.4.1 Tailoring of Covariance Functions

The theory of least squares collocation requires that the covariance
function being used approximates the local empirical covariance function
in the area of computations. This "tailoring" or fitting of an analytical
covariance expression to an empirical one is normally performed with
respect to the gravity anomaly auto-covariance function. Also, it is
usually sufficient to fit just the variance and correlation length,
ignoring the very irregular curvature parameter. A fit to the variance
of local data does not present any problems, as this can be done by

.-:.-,.-..-...-.. ......:..., .-..-.,.-.....,...-,.-..,........ ...., ................................................ ,,,.....,.-..,.,,,.,.,-,.....,..,..-,.,., .
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simply scaling the entire analytical covariance function to reflect the
desired variance (value at V=O"). A fit to the correlation length, on the
other hand, will be simple if it can be done by just changing the radius
of the Bjerhammar sphere occurring in the covariance expression. This
is indeed the case for the Ag* and T* covariance systems that we have
chosen for our numerical experiments.

Figure 26 shows the covariance functions on the mean earth sphere
R for the Ag* and T* systems, as the depth D to the Bjerhammar sphere
takes on values D=10, 20, 30, 50, 100, 500 km. The functions were scaled
to a variance of I mgal 2 . Figure 26 resulted from (5.79) for the
Ag*-system and (5.85) for the T*-system. For the quantity a in (5.77)
we set r =rj=R=6371 km, and ro=R-D. The graphs reveal that to a good
approximation the correlation length E of the Ag*-system is related to Dby:

t(Ag*) 0 1.5 D (5.91) . -

Similarly, we find for the T*-systes:

t(T*) 0.75 D . (5.92)

Equation (5.91) is still true if Ag* is replaced by other white noise
systems with 0(dn)-O (see discussion above (5.88). In fact, we found
practically the same covariance graphs when using systems generated
by white noise distribution on the internal sphere of single density
layer, potential gradient, radial disturbance, and total deflection of the
vertical, all these systems having 0(d,)=0. The covariance expressions
for these systems are given in Sjoberg (1975). On the other hand,
(5.92) remains valid also for the covariance system generated from white
noise double layer distribution on the Bjerhammar sphere, this system
having 0(d,)=l like the T*-system. Again, covariance expressions based
on a white noise double layer distribution may be found in Sjoberg
(1975). The point is that for the described systems of 0(d,)=0 and
O(d,) = I a desired correlation length t may be easily implemented by
specifying the proper value for D. Specifically, very short t-values on
the order of 15 km, needed in detailed local applications, can be easily
set.

In contrast, the Tscherning and Rapp (1974) model entails a more
difficult tailoring procedure to reach very short correlation lengths, as 77
Figure 27 shows. The only effective way to reach ( values on the order
of 15 km is to remove lower harmonics 3&n&180, which is an expensive
procedure. Changing the radius of the Bjerhammar sphere helps the
tailoring procedure, but only in a very limited way since the use of
small D (e.g., D=l ki) is still not enough to reach values on the order
of 15 km.
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5.4.2 Real Data Predictions of Gravity Anomalies in Canada

Sjoberg (1978, Tables 8.1 and 8.2) gives surface gravity anomaly
data with station elevations, that can be used for intercomparison of
gravity anomaly prediction techniques. The points, located in Manitoba, br %

Canada, are shown in Figure 28. Eighty-seven points (shown as circles)
are considered as "observation points" and 50 points (shown as crosses)
are considered as "prediction points" but are also known. An important
characteristics of the point distribution is that the observation points
are spaced almost regularly in a 0*5x0.5 grid, while the prediction points
are generally near the centers of the data gaps. Since the actual
gravity anomaly function can easily have features beyond the maximum
Otxt(.5 resolution implied by the data points, one should not expect a
highly accurate prediction of the withheld test points.

The non-uniqueness of the collocation solution in between the data
points is illustrated in Figure 29. The two collocation solutions shown
are for the 2"x3* area marked off in Figure 28. The solutions were
generated using the Dirac approach with gravity anomaly impulses on
the Bjerhammar sphere of radius (6371 km-D). The depth D=30 km
was used for the solution shown on the left, while D=75 km was used for
the solution on the right. In accordance with the collocation condition
(5.9) the two solutions agree closely with the data values and with each
other at the approximately O'5x(r5 grid locations where the data are
given. The agreement at the data points is not exact in this case,
because of the use of an iterative linear equation solver (see (5.59) -.
which was terminated after 5 iterations. Although the solutions
approximately agree at the data locations, they may have very different
behavior in between the data points. As expected the D=75 km solution
appears smoother (larger correlation length) than the D=30 km solution.
It is important to state that both solutions were contoured from
predicted point values in a O25xO0.25 grid, not just a 0*5x0'.5 grid. This
was to make sure that the surface shown in between the original 0.5x0".5
data points was the actual predicted surface, and not the surface which
would have been artificially produced by the contouring algorithm if
contours were generated from O".5xO.5 point values.

Which then is the optimal Bjerhammar sphere radius to use under a
given base function system in collocation? Different techniques have
been devised in the literature to answer this question. The reader
interested in details should consult Needham (1970), Blaha (1983), and .1
Sunkel (1981b, 1983b) for the case of the point mass system, which is
also applicable to any Dirac system. For an optimal internal sphere
radius in the least squares collocation approach and for the more
general minimum norm collocation approach, see Sjoberg (1975) and
Lelgemann (1981). For the least squares collocation approach, there is a
built-in theory to determine an optimal radius, namely, to use a radius
that will cause the covariance function to fit the correlation length of
local data in the area of computation. However, the most direct method
to determine an optimal radius from the data themselves is to examine
the prediction errors at withheld test points in the area, for various

, .*. .. .. ,. .* .* .. ,.. . ..,._, ~ ,. . **_._ * ._ .,_ .*,...*. -.. _.=. . . . . . ._ *.*" .. ..* .-- . - . . ._ -
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choices of internal sphere radius. This last approach was specifically t
applied by Sjoberg (1975, 1978) in order to determine an optimal radius
for a given base function. It is here that Sjoberg concluded that as
long as an optimal radius is used, various base function systems yield
the same quality of results.

We decided to repeat the gravity anomaly predictions of Sjoberg
(1978, Table 8.3) since conflicting results were presented by Katsambalos
(1981, Table 9.3). The data used were the observation points and
withheld test points shown in Figure 28. The methods compared were
the least squares collocation approach with white noise gravity anomalies
on the internal sphere, which we denote by l.s.c. (Ag*), versus the Dirac
approach with gravity anomaly impulses on the internal sphere, which
we denote by Dirac (Ag*). We additionally used the other two Dirac
systems that we discussed earlier, namely, the point mass and point
dipole Dirac systems, which we denote by Dirac (,*) and Dirac(7*),
respectively. The number of iterations to satisfy the criteria (5.64), and
RMS prediction error at the 50 test points, are shown in Table 8 for
various depths D to the internal sphere.

Our results are in complete agreement with Sjoberg's Table 8.3, for
the l.s.c. (Ag*) and Dirac (Ag*) solutions. At the optimal depths of 15
km for the l.s.c. (Ag*), 30 km for the Dirac (Ag*), 30 km for the Dirac
(ps), and 50 km for the Dirac (T*), the various systems yielded about
the same RMS error of 10.2 mgal, and required about the same number
of iterations of 5 for convergence under criteria (5.64). Since the RMS
anomaly for the 50 prediction points is 13.53 mgals, we have the
following normalized measure of "unrecovered" information (see
Tscherning, 1981, sec. 4):

FNS Variation Observed - Computed) "15.93
FN1S Variation of Observations

- 10.2 76 ,

13.5 76

which is within expectation, considering the large data spacing of 0.5x0.5
(see ibid., Figure 1).

Table 8 shows that the Dirac (Ag*) and Dirac (*) systems produced
practically identical results, a consequence of the fact that both systems
have 0(k,):0 (see discussion above (5.40)). The Dirac (i*) system which
has 0(k,)=' behaved differently, requiring a deeper Bjerhammar sphere
than the other two Dirac systems. As observed by Sjoberg (1978) and
proven by him theoretically, the system of equations arising from the
Dirac formulation is inherently more stable than that arising from the
least squares collocation approach, for a given radius of the internal
sphere. This difference in stability is reflected in Table 8 as
differences in required number of iterations. Also, the l.s.c. solution is

~ R...-.
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Table 8. "Number of Iterations/RMS Error (mgal)" Under Various
Discrete Approaches, When Predicting 50 Withheld Gravity
Anomalies from 87 Known Gravity Anomalies in Manitoba,
Canada.

Depth to l.s.c. (Ag*) Dirac (Ag*) Dirac (/u*) Dirac (/*)
Internal

Sphere(km)

0 1/13.5 1/13.5 1/13.5 1/13.5
5 2/11.9 1/13.2 1/13.2 1/13.6
10 4/10.4 2/12.0 2/12.1 2/13.6
15t 5/10.2t 2/11.0 2/11.0 2/13.1
20 11/10.4 3/10.4 3/10.4 2/12.5
25 25/10.6 3/10.2 3/10.2 2/11.9
30t 30/1Q.9 4/10.2t 4/10.2t 2/11.4
35 30/11.1 5/10.2 5/10.2 3/10.9
40 30/11.3 7/10.3 7/10.3 3/10.6
45 30/11.5 9/10.5 9/10.5 4/10.5
50" 30/11.7 12/10.6 12/10.6 5/10.5" %
55 30/11.8 16/10.7 16/10.7 6/10.5
60 8/10.6
65 10/10.7
70 14/10.8
75 18/10.9
80 24/11.0
85 30/11.2
90 30/11.3

t optimal results. Iterations were terminated when RMS Residual < 0.25
mgal, or Maximum Residual < 0.5 mgal, or No. of Iterations > 30.

much more sensitive than the Dirac solution, to changes in the radius of
the internal sphere. This is evidenced by the narrow range of useful
depths (e.g., 10 km to 25 km) that can be used for the l.s.c. method, as
compared with the broad range of useful depths for the Dirac systems
(20 km to 55 km for the Dirac (Ag*) and Dirac (.u*); 30 km to 65 km for
the Dirac (*)).

5.4.3 Comparison of Discrete and Continuous Models in the New Mexico -.
Test Area

In this section we compare the various models discussed earlier, in
terms of their ability to model the high frequency portion of the radial,

. --- .
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North-South, and East-West components of the disturbance vector in
space. The problem is again the computation of the external field from
gravity anomaly data on the earth's (non-spherical) topography. We
concentrate on the high frequency part of the total field, because this
is the part affected most by the topography problem. We will
intercompare the discrete solutions (solutions to the Bjerhammar
problem) discussed in this chapter, as well as the classical integral
solution used in Chapter 4. Computation points will be along the five
vertical test lines in a l*xl" area in New Mexico, already described in
Chapter 4 (Figure 25). Altitudes of computation will again be at 5, 10,
30, 100, and 500 kin, giving 25 test points in all (5 points per line, times
5 test lines).

To serve as the "true" field we took the residual topographic model
(RTM), generated from the gravitational influence of the positive and
negative topographic masses lying between the actual topography and a
reference topography to spherical harmonic degree 180. Specifically, we
used the field generated in Test 7 of Chapter 4. The field was
generated from topographic data in a 2"x2" area centered at the
computation foot points. The integration of gravitational influences was
performed using Forsberg's (1984) prism integration program along with
30"x30" point elevations, 5'x5" mean elevations, reference topographic
elevations to degree 180, and an assumed density of 2.67 g/cm3 . Values
were generated for 5'x5' surface gravity anomalies in the 2"x2" area
and for the disturbance components at the 25 test points in space.
These values were then considered as the self-consistent or "true" set
of values for testing different techniques for modeling the spatial
disturbance vector field from surface gravity anomaly data. The three 2
disturbance components at each of the 25 test points in space are shown
in Table 9. The overall RMS of the values in Table 9 is 12.36 mgals.

As a first step we performed computations analogous to Table 8 to
determine for each base function system an optimal internal sphere
radius to use with the given surface gravity anomaly data. This time,
optimal radii were determined not by minimizing the RMS anomaly
prediction error at withheld surface points, but by minimizing the RMS
difference between computed and "true" (Table 9) disturbance
components in space. The results are shown in Table 10, giving the
number of iterations performed (see (5.59)) and the RMS disturbance
error (computed - "true" value) for various depths to the Bjerhammar
sphere and various base function systems. To repeat, for visualization
one can use the interpretations that: the Dirac (Ag*) solves for gravity
anomaly impulses on the internal sphere; the Dirac (i*) solves for point
dipoles on the internal sphere; the l.s.c. (Ag*) uses the attenuated white
noise gravity anomaly covariance function; and the l.s.c. (T*) system
uses the attenuated white noise potential covariance function. The
number of iterations allowed was reduced from the 30 used in Table 8 to
just 10, as the results did not significantly improve with more
iterations. The point mass system Dirac (p*) was confirmed to yield
practically identical results as the Dirac (Ag*) system, and is now
omitted from our numerical presentations. Based on the results of
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Table 10 we selected the optimal depth of 10 km for the Dirac (Ag*), 15
km for the Dirac (T*), 3.5 km for the l.s.c. (Ag*), and 15 km for the
l.s.c. (T*). Note that for the Dirac (Ag*) the result for depth 20 km is
even slightly better than that for depth 10 kin, but a shallower depth is
preferable because in principle the system will be more stable. The
results corresponding to these optimal depths were then used in any
further comparisons of the different methods. Note from Table 10 that
the Dirac systems have faster convergence (fewer number of iterations)
than the least squares collocation systems. Also, it is indicated that the
Dirac systems have better agreement with the residual topographic model
(RTM) than do the l.s.c. systems.

Table 10. "Number of Iterations/RMS Error (mgals)" Under Various
Discrete Approaches, When Modeling the Disturbance
Components of the Residual Topographic Field, from 5"x5' ..-

Surface Gravity Anomalies in the 2"x2" New Mexico Test Area.

Depth to
Internal Dirac (Ag*) Dirac (T*) 1.s.c. (Ag*) 1.s.c. (T*V

Sphere (kin)

1 3/6.01 2/11.88 10/2.39 10/12.17

3.5 5/1.79 3/8.50 10/1.55t 10/6.28

5 7/1.23 3/5.21 10/1.96 10/4.12-

10 10/1.14t 5/1.08 10/2.57 10/2.26 "

15 10/1.23 10/1.05t 10/3.17 10/1.82t

20 10/0.98 10/1.11 10/2.96 10,'2.67

t optimal results. Iterations were terminated when RMS Residual < 0.25
mgal, or Maximum Residual < 0.5 mgal, or No. of Iterations > 10.

Next, we now attempt to provide a specific feeling for the numerical
differences among the various discrete models, and the classical integral
model used in Chapter 4. As presented in Chapter 4, the integral model
can account for the mean topography through the quantity hm in the .7*

formulas, where hm is a mean topographic elevation in the area of V
computation. Obviously, the neglect of topographic variations around
the mean is a modeling error being committed in this approach. Our
present comparisons will give a feeling for the magnitude of this error
(in fact, this error was also examined in Chapter 4). The interest in
using the integral model lies in its relative economy, not requiring any
solution of a linear equation system in contrast to the discrete models.

zf.z-
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We compared the various models by pairs, resulting in a total of 1-
nine pairings. In every pairing, each of the two models involved had
its own set of 75 disturbance values analogous to Table 9. We
differenced the two tables of disturbances involved in each pairing,
producing nine tables containing 75 disturbance differences each. Based
on looking at the nine tables of differences we decided that for the

analysis and presentation of results it would be sufficient to represent . 4
each table by:

- the RMS value of the 75 differences contained in the table; and

- the test line or lines (out of A, B, C, D, E; see Chapter 4) which
show maximal differences for the 6 r, 61F, 6X disturbance "

components. "

The results for the nine pairings are shown in Table 11. 3-4

For the integral model involved in pairings (1) and (9), a mean
topographic elevation of hm--1.5 km was used as in Chapter 4. When the
value of hm-O km was tested, thereby assuming the given gravity
anomalies to refer to the geoid, the RMS difference with the RTM
(pairing (1)) increased significantly from 1.75 mgal to 2.26 mgal, and the
RMS difference with the Dirac (Ag*) (pairing (9)) increased from 0.98
mgal to 1.65 regal. Therefore, we specifically conclude that there is a %
significant gain in accuracy when the mean topography is accounted for -
through hm in the classical integral formulas.

Pairings (1) - (5) show the comparison of the integral model plus
the four "discrete approach" models against the residual topographic
model (RTM). Again, we assume the RTM to be the "true" field and call
the differences shown as "errors".

Comparing (1) with either (2) or (3), one can see a significant
although not drastic increase in accuracy with the use of the Dirac
model over the integral model. Improvement is especially evident at
altitudes 10 km and 30 km. Above 30 km the choice of model is not
critical, as high frequency effects are greatly attenuated at such

altitudes. The residual errors of the Dirac models especially at low
altitudes can be attributed to the use of 5"x5' gravity anomalies and
elevations, which automatically limits the resolution of field
representation. The RTM inherently has more detailed resolution, with ... ,

its use of up to 1 km x 1 km topographic height data (which directly
converts to 1 km x I km resolution of gravity data because of correltion
between elevation and gravity anomalies). Therefore, we conclude a
significant gain in accuracy with the use of a Dirac model over the
integral model. But at the same time, the Dirac model (or any of the
other collocation models) cannot represent the very high resolution

attainable with the RTM at very low altitudes. The RTM should always
be used as one of the complementary models at low altitudes, whenever

...........................................................
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detailed height information is available.

Examining pairings (4) and (5), no evidence can be found of any
improvement with the use of the least squares collocation (l.s.c.) models
over the Dirac or the integrat models. The problem encountered during I-
computations with the l.s.c. systems was the instability of linear
equation systems. The use of more widely spaced gravity anomaly data
(say, 10"xlO') would have made the systems more stable, but this would
also have automatically reduced the achievable resolution of the field.
We conclude that for very detailed field representations, the stability of
the arising linear equation system plays a significant role in the
discrete approaches, and in such cases the Dirac systems are preferable
to the least squares collocation systems.

Examining pairing (6), one can see that with the use of their
respective optimal radii to the internal sphere, the Dirac systems agree
with each other in the submilligal level even at the low altitude of 5 km.
Therefore, from this test we do not see any preference to the point
gravity anomaly, or the point mass, or the point dipole systems with
respect to each other.

C-..

On the other hand, pairing (7) shows that the l.s.c. system is much
more sensitive to the choice of either the T*- or the Ag*-system (This is -'

equivalent to the choice of norm to be minimized; see remarks after -.-
(:.74)). Also, the great sensitivity of the l.s.c. systems to the depth of
the Bjerhammar sphere (See Tables 10 and 8) contributes to the dif-
ferences found in pairing (7). Also, the results for the l.s.c. systems
refer to linear equation solutions that have not satisfactorily converged
'see (5.64) for convergence criteria) in the course of the iterations. .,"-*

Therefore, convergence problems also play a role in the differences
found in pairing (7). We should note that direct matrix inversions were
not tried in these types of tests, but they should have been.

Pairing (8) compares the Dirac (Ag*) with the l.s.c. (Ag*). Again,
the significant differences can be attributed to the stability problems
mentioned above for the l.s.c. system.

Finally, pairing (9) shows how the integral model performs in com-
parison with the Dirac model. As one can see, the differences between
the two models are not very large, although they are significant. The
differences indicate how much additional information about the
disturbance field is gained by accounting for the full variations of the
topography (as in the Dirac system), not just the mean topography (as
in the integral system). Above 30 km the integral model is sufficient,
but at very low altitudes the Dirac system should be used for accurate
determinations.

• . ._.
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Table 11. RMS and Maximal Differences Between Various Models
Disturbance Vector Components (mgals).

Test Lines with Maximal Differences 00kfiNS

Difference LINE 5 km 10 km 30 km 100 km 500 km

(1) 1.75 C 6r -3.13 -1.30 -0.67 -0.28 -0.02

(Integral B 6- -3.52 -2.65 -1.28 -0.13 0.00

- RTM] A 6X 8.48 5.14 2.10 0.44 0.00

(2) 1.14 A 6r 2.36 0.97 0.24 -0.07 -0.04

[Dirac (Ag*) A 6; -2.43 -0.75 -0.16 -0.06 0.00

- RTMI A 6N 6.41 2.84 0.88 0.30 0.01

(3) 1.05 A 6r  3.12 1.53 0.71 0.52 0.09

[Dirac (T*) A 6; -2.07 -0.59 -0.26 -0.13 -0.01

- RTM] A 6X 5.37 1.89 0.16 -0.09 -0.01

(4) 1.55 C 6r -3.23 -1.09 -0.20 0.08 -0.01

[1.s.c. (Ag*) C 6; -4.56 -3.41 -1.11 -0.07 0.00

-RTMI D 6 4.28 2.38 0.83 0.17 0.01

(5) 1.82 C 6r  -3.28 -1.01 -0.33 0.40 0.0"

[1.s.c. (T*) C 6- -3.32 -2.23 -0.62 -0.02 0 * A

- RTM] D 6 8.24 4.64 1.33 -0.02 -0.

(6) 0.49 A 6. -0.76 -0.56 -0.46 -0.59 -0.13

[Dirac (Ag*) A 6; -0.36 -0.16 0.09 0.07 0.01

- Dirac (1*)] A 6A 1.04 0.95 0.71 0.39 0.02

(7) 1.38 D 6, -4.07 -3.38 -1.79 -0.46 -0.11

'l.s.c. (,g*) A 6; 3.10 2.67 0.56 0.05 0.7 -

- 1.s.c. (T*)] D 6x -3.96 -2.26 -0.50 0.19 0.03

(8) 1.30 A 6r 4.44 3.02 1.22 -0.09 -0.03 U-

[Dirac (Ag*) C 6; 4.92 3.43 0.98 0.00 0.00

1.s.c. (Ag,)] D 6N -3.24 -1.31 -0.28 0.02 0.01

(9) 0.98 A 6r  -1.85 -1.48 -1.27 --0.26 0.01

rIntegral B 6; -2.20 -1.61 -0.72 -0.02 0.00

-Dirac ( 1*)] B 6X 2.77 2.23 0.42 0.09 0.00



6. SUMMARY, CONCLUSIONS, RECOMMENDATIONS

In this report we have discussed the modeling of the externalgravity disturbance vector of the earth, from surface gravity anomaly ~ i~

data. This work is a continuation of the work of Katsambalos (1981)
with important differences and expansion of treatment as noted in
Section 1.1. In principle the disturbance vector is modeled as

= grad T, with the disturbing potential T being in turn related to the
gravity anomaly Ag through (1.9) or its spherical approximation (1.12).
Under the assumption that T is harmonic outside the earth's attracting
masses, the knowledge for Ag at every point on the earth's surface is
sufficient to define T in all of space. More details on preliminary
concepts are given in Section 1.2, discussing the precise definition of
Ag, the relation between Ag and T at a point, and the realization of Ag
from observational data on the earth's surface. In Section 1.3 a
discussion is given outlining the scope of the entire study.

Chapter 2 discusses the re-parameterization of the long-wavelength
components of the anomalous gravity field, from the given surface
gravity anomalies to a set of spherical harmonic coefficients of the
earth's disturbing potential. The focus is on the analytical continuation
of the surface gravity anomaly data to values that refer to a spherical
boundary surface. The Ag-values on a sphere are the values directly
useable in the determination of spherical harmonic coefficients. It is
recommended that the analytical continuation be carried out in two
steps: (a) analytical continuation of surface values to the ellipsoid;
followed by (b) analytical continuation of values from the ellipsoid to a
sphere, most appropriately the equatorial sphere.

Step (a) above can be implemented by Taylor series expansion using
the vertical gradients of the field. Operationally, such gradients can be
obtained from an existing spherical harmonic expansion, in application of
the ideas of Rapp (1984). Step (b) can also be implemented by Taylor
series, but because the deviation between ellipsoid and sphere is a
simple function of latitude it is possible in this case to analytically
expand the terms of the Taylor series into spherical harmonics.
Specifically, Taylor terms involving up to second order gradients have
been expanded in Chapter 2. Our main contribution via Chapter 2 is in
showing that such spherical harmonic expansions of Taylor series terms
lead to the ellipsoidal correction terms of Pellinen (1982). As a result, it
is shown that the application of Pellinen's ellipsoidal corrections is an
analytical implementation of step (b) above. This is in contrast to the
numerical implementation of step (a). It is also shown that the use of
the ellipsoidal corrections as given in Pellinen (ibid.) implies the use of
a relation between Ag and T that neglects only terms of O(e'), i.e., the
relation (1.13).
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Tables I and 2 of Chapter 2 indicate the number of Taylor series
terms that need to be considered in the analytical continuation of values
from ellipsoid to sphere. The higher the maximum degree Nma x of
spherical harmonic series development the more Taylor terms need to be
used. For example, with Nmax = 300 it is indicated that terms up to the
second-order gradient need to be considered, leaving (gravity anomaly,
height anomaly) errors of about (0.8 mgal, 2 cm) in the polar areas.
The corresponding effects of the analytical continuation of surface
values to values on the ellipsoid are an order of magnitude smaller,
because of the shorter vertical distances involved in the analytical
continuation.

For the complete modeling of the disturbance vector signal in its
entire frequency range, locally valid models must be used to complement
the globally valid spherical harmonic model. Before studying such local
models in Chapters 4 and 5, however, Chapter 3 first gives a
familiarization study of the signal characteristics to aid the design of
models and numerical experiments. Information is presented on the
spectral energy distribution (Section 3.2) and data response
characteristics (Section 3.3) of the disturbance vector signal as a
function of altitude in space. For example, according to Figures 4 and 5
a representation to n = 360 (015x01*5 resolution) will resolve at least 90%
of the RMS signal value for altitudes above 30 kin; for an altitude of (5,
10, 20) km such representation to n = 360 leaves about (16, 10, 5) mgals
unresolved.

At the low altitude of 5 km, for example, a representation to n
2500 (5x5' resolution) is needed to resolve 99% of the RMS radial or
horizontal disturbance signal. On a point by point computation of signal
from gravity anomaly data, however, it is not necessary to have data of
such uniform resolution all over the earth. Rather, data of less and
less resolution (and accuracy) can be used farther and farther away
from the computation point. Such data response characteristics of the
signal are studied in Section 3.3 using the tools of truncation theory.
Under the formulation of truncation theory we obtain the so-called
truncation error, i.e., the amount of error propagated into the computed k A
signal due to the use of a particular set of data in the "remote zone".
There are four factors affecting the truncation error: the data
accuracy, the data resolution, the truncation method used (i.e., the
kernel modification used), and the distance of the data from the
computation point (i.e., the cap size). The influences of these factors
are shown in Figures 7 to 14, for the radial and horizontal disturbance *
components at a high altitude of 100 km and a low altitude of 5 km.

As an example of the use of Figures 7 to 14, consider first Figure 7
showing the case of radial disturbance computations at altitude 100 km.
For the assumed data error model (see (3.64)), the data resolution to -A I

Nref - 20 (2 9"x9" resolution), the unmodified truncation method, and U -

the cap size o 13", we find from Figure 7 that the propagated error
to the signal is about 0.2 mgal. If we change to the use of errorless
data (circled plot in Figure 7) the required cap size to maintain a 0.2

• . .
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regal error reduces from *o = 13" to = 9". If, moreover, we increase
the data resolution to Nref = 36 (2 5x5" resolution), then the required

cap size for a 0.2 mgal error reduces further from * = 9" to o= 5.
Now looking at Figure 8, we see that the originally required cap size of
*o = 13" can also be drastically reduced (to *o = 6") if we change from
the use of the unmodified truncation to the use of the improved
Molodensky truncation.

General conclusions can be stated based on Figures 7 to 14 as
follows. The horizontal disturbance is much more sensitive to remote
zone data than the radial disturbance, as evidenced by the larger data
caps (more than 2 times larger than the radial case) needed to keep
truncation error below, e.g., a 0.2 mgal level. The improved Molodensky
truncation method gives better results than the the unmodified
truncation for relatively large cap sizes only; anticipating the use of
remote zone data to resolution nref h 180, then we can say that for cap
sizes and accuracy levels of interest the improved Molodensky method
offers no significant gain over the unmodified method for radial or
horizontal disturbance computations in space.

Chapter 4 starts the study of local models that can be used to
complement the globally valid spherical harmonic model studied in
Chapter 2. In the global discussions of Chapter 2, the problem of the
shape of the boundary surface lies in the deviations of the earth's
surface from the equatorial sphere; these deviations can amount to 20
km at the poles. In contrast, for the local models such as those of
Chapter 4, the problem with the shape of the boundary surface consists
only in the deviations of the earth's surface from an equipotential .-

surface. The equipotential surface is then considered as a sphere, after
a formal neglection of the earth's flattening under the spherical
approximation (see Figure 2). Therefore, whereas in the spherical
harmonic model both the topography and ellipticity are important issues
in the modeling, in the case of the local models of Chapters 4 and 5
only the topography needs to be of special concern.

In Section 4.1 a degree variance analysis is first performed to
quantify thc role of the topography in the modeling problem. The
observed degree variances of the earth's anomalous gravity field are
expressed as the combined effect of the gravitational influence of
condensed topographic masses and their Airy-Heiskanen isostatic
compensation at depth D. It is then numerically shown the considerable
smoothing of the field that results from the removal of shallow
topographic masses associated with topographic heights beyond harmonic
degree N (see Figures 15 and 16 for N = 180). The smoothing of the
field reduces the errors associated with the assumption that the
topography is a level surface (see Table 4 and Figure 17 for a numerical
example). The considerations of Section 4.1 lead to a feasible hybrid
model: the spherical harmonic model accounts for remote zone effects;
the residual topographic model accounts for high frequency variations of
the field; and the classical integral model accounts for whatever is the
residual field not already modeled by the first two models. The

. - .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .
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smoothness of the residual field allows the minimization of the errors
associated with assumption of the classical integral model, namely that

, the earth's surface is a level surface.

Section 4.2 summarizes the equations and operational programs
associated with the above three complementary models. Then, numerical " -

tests are conducted in Section 4.3, over a mountainous test area in New ".
Mexico. Radial and horizontal disturbance values are computed along
five vertical test lines, at altitudes 5, 10, 30, 100, and 500 km. The
tests are designed to (a) confirm earlier discussions and conclusions
(see Tests 1, 2, 4, 7, 8); (b) establish operational details of
implementation (see Tests 3, 5, 6); and (c) assess the quality of the
results (see Test 9). An auxiliary test to Test 9 is conducted (Section
4.3.4), concluding a significant improvement caused by accounting for
the mean topography in the classical integral models (see Table 6).

Test 9 shows errors (maximal value = 8 mgals) that can be
encountered if the classical integral model is used to represent the
residual topographic field. Part of the errors is caused by the
neglection of the variations of the topography with respect to the mean
topography. However, as to be indicated in the tests of Chapter 5, most
of the errors can be attributed to the inherently less resolution of the
data used in the integral model (i.e., 5"x5' anomalies) as compared with
the data used to generate the residual topographic model (i.e., 30"x3O"'
topographic heights).

To eliminate the theoretical modeling error caused by the neglection
of topographic variations around the mean elevation, we can resort to
the use of the so-called discrete approaches. These approaches arise
from solving the Bjerhammar problem. Two major discrete approaches
are studied in Chapter 5, namely, the Dirac approach and the least
squares collocation approach. Three versions of the Dirac approach are
experimented on, those based on solving on the internal sphere the (a)
gravity anomaly impulses Ag*; (b) point masses p*; and (c) point dipoles
j *. For the least squares collocation (l.s.c.) approach two versions are
experimented on, those based on generating the empirical covariance
function from (a) white noise gravity anomaly Ag*; and (b) white noise
disturbing potential T*. All these discrete approaches rigorously take
as input data a finite number of gravity anomalies given on the earth's
surface. The techniques then produce artificial continuity from the
finite data by postulating the form of the harmonic approximating
function to T (see (5.17) for the Dirac case, and (5.65) for the l.s.c.
case) and fitting this form to the given data.

The Dirac (Ag*) and Dirac (p,*) produced practically the same results
in the numerical tests, because their base functions behave similarly in
the limit as n -0 a. Such high degree harmonics are the ones important
for local modeling problems. The Dirac (j-) required a deeper
Bjerhammar sphere compared with the Dirac (AgS or p*) because of the
faster decay of the base function in the Dirac (Ag* or p*) (see (5.26),
(5.33), (5.37)). Exactly the same situation exists for the l.s.c. systems.
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The l.s.c. (T*) system, which as noted under (5.92) behaves similarly as
a l.s.c. (,*) system, required twice as deep Bjerhammar sphere as the
.s.c. (Ag*) system (see (5.91), (5.92), Figure 26) in order to generate the

same correlation lengths on the earth's surface. ,'-,. .i

Comparing the Dirac and l.s.c. systems, we numerically found the
former to result in more stable linear equation systems (see also
Sjoberg, 1978). For the relatively large 0.5xO5 spacing of surface data
used in our tests in Canada, no matrix stability problems were
encountered and all the Dirac and l.s.c. systems tested produced the
same quality of results at their optimal depths to the Bjerhammar
sphere. For the dense 5'x5" data used in our New Mexico tests,
however, the Dirac results were superior to those of the l.s.c. because
of the ill-conditioned matrices in the latter system.

Considering the rest of the tests in Section 5.4.3 and summing up
the report: we recommend the hybrid model of Chapter 4 for
operational modeling of the spatial disturbance vector, with possible
replacement of the classical integral model by a collocation procedure for
accurate determinations over mountainous areas. The residual
topographic model should always be used whenever a detailed DTM is
available, since both the integral and collocation models are necessarily ..
limited in resolution through the use of gravity anomaly data with
practical spacing that can only be expected to be around 5"x5'. The
limitation of resolution can be a more significant concern than the
non-rigorous accounting of the topography in the integral model (see
pairings (1), (2), and (9) of Table 11). The integral model with mean
topography accounted for is in reasonably good agreement with a
collocation procedure (the Dirac model, see pairing (9) of Table 11).
Matrix conditioning problems with the l.s.c. approach support preference
to the Dirac systems for rigorous treatment of the topography at
detailed (5'x5") resolutions.

A collected summary of the suggested computational procedures
discussed in this report, with references to pertinent equations found in
the body of the report, is given as an Appendix.
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APPENDIX

Summary of Suggested Computational Procedures for the Computation of
the Gravity Disturbance Components in Space from Surface Gravity

Anomaly Data.

A. The Spherical Harmonic Model (SHM)

1. To compute spherical harmonic potential coefficients C. from surface
gravity anomalies Ag, apply these steps:
(a) reduce Ag to gravity anomalies AgE on the ellipsoid, using (2.3);
(b) compute conventional potential coefficients Cnm from Ag"

employing ellipsoidal corrections, using (2.9) and (2.54)-(2.56),
with the Rm# denoting the quantity in braces in (2.32) and the
S.m; being given by (2.51), This solution implies the use of up
to second radial derivative of the Ag-field to analytically
continue Ag[ to gravity anomalies Ag. on the equatorial sphere,
and should be sufficient for n up to the envisioned n 360;

(c) fully normalize the Cn. using (2.19) to finally obtain C.

2. See Figures 4 and 5 to know approximately how much information is
left unresolved by the available degree Nr,, of SHM at the altitude
H of interest. For example, given N,. -- 180 and H = 30 km we
find a 6-mgal RMS signal left to be resolved by local models. Since
the total RMS signal at H = 30 km is seen to be 26 mgals, we then
have 6/26 = 23% of the signal energy left unresolved using Nr.f
180.

3. Decide on how large cap of local gravity anomaly data should be
used to complement the SHM. This can be judged from the
magnitude of truncation error that can be tolerated. The truncation
error in this case consists of the commission and omission errors
due to the use of the SHM to represent the remote zone. The
truncation error is expressed by (3.52) for the radial disturbance
and (3.62) for the total horizontal disturbance. Anticipating the use
of a high degree SHM (Nrge b 180) then we have shown that it will
be sufficient to use unmodified truncation coefficients for the values
k. and vns needed in (3.52) and (3.62). These unmodified coefficients
can be computed using the subroutines of Shepperd (1979). A
general idea of reasonable cap sizes for given altitudes and
accuracies may be obtained from the discussions and figures of
Chapter 3 or from earlier experience, e.g., in Rapp (1966b) and
Sunkel (1981a).
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4. To generate a dense regular grid of surface gravity anomalies Ags r
implied by the SHM, use (4.12)-(4.14) and the fast program by Rizos
(1979). The Ags are to be subtracted from the originally given
surface gravity anomaly data which should also have been
established on a regular grid using procedures described in Cruz
and Laskowski (1984, sec. 8).

5. To generate the spatial disturbance components implied by the SHM,

use (4.15)-(4.17). Point by point evaluations can be done using the
program by Rapp (1982b). Evaluations on a regular grid in a ';
limited area can be done efficiently, using a program that we
modified from Rizos (1979) to compute all three disturbance
components in a single run.

B. The Residual Topographic Model (RTM)

1. To generate rigorous values of surface gravity anomalies Agt implied
by the RTM, use the program of Forsberg (1984). To limit the
expense in computer time, an option exists to use the approximate
Agt given by (4.28) or even (4.29) in an outer zone, e.g., outside a
1'-radius from the spatial points at which the disturbances are to
be computed. Tests directly related to the use of an approximate
ftgt are given as Tests 5 and 6 in Chapter 4. The Agt, like the Agr-
of the SHM, are to be subtracted from the surface gravity anomalies
to form residual gravity anomalies that continue to refer to the
earth's surface (see (4.18)).

2. To generate the spatial disturbance components implied by the RTM,
again use the program of Forsberg (ibid.). Introduce the
transformation (4.30) into Forsberg's program to compute the
North-South and East-West disturbance components instead of the
deflections of the vertical.

C. The Integral Model

1. The residual gravity anomaly Ag0 of (4.18) can be input into the
integral model to complete the modeling of the disturbance vector in
its entire frequency range. The AgO are assumed to refer to an
equipotential surface, one passing through the mean topographic
elevation h. in the local area of computations. The hm is specifically
used in (4.25).

2. The actual generation of the spatial disturbance components is
performed in the integral model using (4.19)-(4.21). A program

modified from Rapp (1966b) can be used for this purpose. Our
modified program accepts 5"x5' mean anomalies, and the so-called
integrated kernel evaluation was implemented for those 5"x5" blocks
whose centers were within a distance of 10' from a computation
point. The last procedure wns implemented to avoid large kernel

...........................................4. -..-.....
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discretization errors associated with the use of the center point
kernel evaluation at low altitudes.

3. The disturbance components computed from the integral model can be

added to those from the spherical harmonic and residual topographici- models, to form the final disturbance values in space (see Table 7).

Note: If the RTM had not been used as one of the complementary
models, then the part of the field that would have been represented
by the RTM would in this case be included in the field represented
by the integral model. Errors would be introduced in this way, the
magnitudes of which were studied over irountainous area in Test 9
of Chapter 4 (see also row V of Table 7 and pairing (1) of Table 11).
It has been concluded that a large part of the observed errors is
due to the unavoidable loss of resolution caused by the use of 5"x5'
anomalies in the integral model as opposed to the use of 30"x30"
height information in the RTM. A smaller (but still significant) part
of the error is caused by the non-rigorous treatment of the
topography in the integral model, and this error source could in
theory be avoided through the use of collocation techniques in
space (for a numerical study of this point compare, e.g., pairings (1)
and (2) of Table 11).

D. The Collocation Model L

1. Motivation for Use. For high accuracies in mountainous areas it is
recommended to employ collocation techniques to rigorously account
for the shape of the topography. For economy and improved
convergence of the solution it would again be advisable to use the
RTM to remove most of the roughness of the original field, leaving a
relatively smooth residual field. The data would then be surface -'-

residual anomalies Agc, which can in fact be the Ag° of (4.18).

2. Summary of our Results. We have seen no preference of one over -"-

the other, among the use of gravity anomaly impulses, point masses,
and point dipoles under the Dirac approach to collocation. We have
concluded a preference of the Dirac over the least squares
collocation systems, for reason of stability of linear equation system
at such high resolution as 5"x5'. The base functions and
covariance functions needed for disturbance computations under the
studied collocation systems are given in Chapter 5.

3. ODerational Procedures. Either use collocation to replace the
integral model entirely, or, for reasons of computer economy, one
may choose to simply complement the integral model by collocation in
an inner zone close to the computation points. For the latter
option, numerical implementation may be patterned after Lachapelle
(1977) but using the base function or covariance function desired.
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Note that in our studies we were specifically concerned with
the verification and comparison of various collocation solutions, not
with the development of fully operational procedures for
implementing such solutions. Therefore, we worked under controlled
conditions: regularly gridded data and a high frequency field with
negligible remote zone effects outside the small 2"x2" test area (see
Chapter 5). In operational cases we would like to efficiently apply
collocation using data in larger areas (see, e.g., Blaha (1983)), --
and/or be able to establish and use variable data density depending
on the roughness of particular sections of the computation area
(see, e.g., Sunkel (1983a)). Other important issues are the
operational establishment of optimal depth to the Bjerhammar sphere,
and the formation and numerical solution of the relevant linear
equation systems. For developing operational collocation procedures
we refer the reader to recent works, of which we mention Blaha
(1983), Brennecke and Lelgemann (1984), Sunkel (1983a, 1983b),
Tscherning and Forsberg (1983).



I.

LIST OF REFERENCES

Bjerhammar, A., "A New Theory of Geodetic Gravity," Division of Geodesy, -,

The Royal Institute of Technology, Stockholm, No. 243, 1964. '.

Bjerhammar, A., "Reflexive Prediction," Sixth Symposium on Mathematical
Geodesy (3 rd Hotine Symposium), Siena, Italy, April 1975.

Bjerhammar, A., "A Review of Discrete Methods in Physical Geodesy," in
Approximation Methods in Physical Geodesy, H. Moritz and H. Sunkel
(eds.), Herbert Wichmann Verlag, Karlsruhe, 1978.

Bjerhammar, A. and L. Svenson, "On the Geodetic Boundary Value
Problem for a Fixed Boundary Surface - A Satellite Approach,"
Bulletin Geodesique, vol. 57, No. 4, pp. 382-393, 1983.

Blaha, G., "Point-Mass Modeling of the Gravity Field with Emphasis on
the Oceanic Geoid," AFGL Technical Report No. 83-0007, Air Force
Geophysics Laboratory, Hanscom AFB, Massachusetts, February 1983,
ADA130535.

Brennecke, J. and D. Lelgemann, "Geoid and Gravity Anomalies in the
North Sea Area Derived from SEASAT Altimeter Data," Manuscripta
Geodaetica, vol. 8, No. 4, pp. 301-320, March 1984.

Brovar, V.V., "On the Solution of Molodensky's Boundary Value Problem,"
Bulletin Geodesique, vol. 72, pp. 167-173, 1964.

Chen, J.Y., "Methods for Computing Deflections of the Vertical by
Modifying Vening-Meinesz' Function," Bulletin Geodesique, vol. 56,
No. 1, pp. 9-26, 1982.

Colombo, 0., "Convergence of the External Expansion of the Gravity Field
Inside the Bounding Sphere," Manuscripta Geodaetica, Vol. 7, No. 3,
pp. 209-246, October 1982. ". -

Cruz, J.Y. and P. Laskowski, "Upward Continuation of Surface Gravity
Anomalies," Report No. 360, Dept. of Geodetic Science and Surveying,
The Ohio State University, December 1984, AFGL-TR-84-0331,
ADA154973.

Forsberg, R. and C.C. Tscherning, "The Use of Height Data in Gravity
Field Approximation by Collocation," J. Geophys. Res., Vol. 86, No.
B9, pp. 7843-7854, September 1981.

136

. ........ *



137

Forsberg, R., "A Study of Terrain Reductions, Density Anomalies, and

Geophysical Inversion Methods in Gravity Field Modelling," Report
No. 355, Dept. of Geodetic Science and Surveying, The Ohio State
University, April 1984, AFGL-TR-84-0174, ADA150788.

Gerstl, M. and R. Rummel, "Stability Investigations of Various
Representations of the Gravity Field," Reviews of Geophysics and
Space Physics, vol. 19, No. 3, pp. 415-420, 1981.

Heiskanen, W.A. and H. Moritz, Physical Geodesy, W.H. Freeman and Co.,
San Francisco, 1967.

1AG, "Geodetic Reference System 1967," Special Publication, Bulletin
Geodesique, 1970.

Heller, W.G. and S.K. Jordan, "Attenuated White Noise Statistical Gravity
Model," J. Geophys. Res., Vol. 84, No. B9, pp. 4680-4688, August 1979.

Jekeli, C., "Reducing the Error of Geoid Undulation Computations by I-Or,

Modifying Stokes' Function," Report No. 301, Dept. of Geodetic
Science and Surveying, The Ohio State University, May 1980,
NGR-36-008-161, N80-27872/4. , -

Jekeli, C. and R.H. Rapp, "Accuracy of the Determination of Mean
Anomalies and Mean Geoid Undulations from a Satellite Gravity Field
Mapping Mission," Report No. 307, Dept. of Geodetic Science, The
Ohio State University, August 1980, NGR-36-008-161, N81-12669/0.

Jekeli, C., "The Downward Continuation to the Earth's Surface of
Truncated Spherical and Ellipsoidal Harmonic Series of the Gravity
and Height Anomalies," Report No. 323, Dept. of Geodetic Science and
Surveying, The Ohio State University, December 1981,
AFGL-TR-81-0361, AD-A112 237/3.

Jekeli, C., "Optimizing Kernels of Truncated Integral Formulas in
Physical Geodesy," presented at IAG, General Meeting, Tokyo, Japan,
May 7-15, 1982.

Katsambalos, K.E., "Simulation Studies on the Computation of the Gravity
Vector in Space from Surface Data Considering the Topography of
the Earth," Report No. 314, Dept. of Geodetic Science and Surveying,
The Ohio State University, June 1981, AFGL-TR-81-0187, AD-AI09 "- .1
856/5.

Krarup, T., "A Contribution to the Mathematical Foundation of Physical
Geodesy," Meddelelse No. 44, Geodetisk Institut, Copenhagen, 1969.

Krarup, T., Letters on Molodensky's Problem I-IV, Communication to the
members of AG Special Study Group 4.31, unpublished, 1973.

,°, .:"-: ,

.'. 2..

r, . .., . ,,.. . ... -, ...... ,,, . ... . . ,, . ., . ., . , ... - . . .' . ' ' ' " ." . " . " ' .. , . , ,



138

Lachapelle, G., "Estimation of Disturbing Potential Components Using a
Combined Integral Formulae and Collocation Approach," Manuscripts
Geodaetica, vol. 2, No. 4, pp. 233-262, 1977. ""

Lambeck, K., "Methods and Geophysical Applications of Satellite Geodesy,"
Rep. Prop. Phys., vol. 42, pp. 547-628, 1979.

Lelgemann, D., "Untersuchungen zue einer genaueren Lsung des
Problems von Stokes," Deutche Geodfitische Kommission, Series C, No.
155, 1970.

Lelgemann, D., "Spherical Approximation and the Combination of
Gravimetric and Satellite Data," Bolletino di Geodesia e Scienze Affini,
vol. 32, No. 4, pp. 241-250, 1973.

Lelgemann, D., "On Numerical Properties of Interpolation with Harmonic
Kernel Functions," Manuscripts Geodaetica, vol. 6, No. 2, pp. 157-191,
October 1981.

.. ~Meissl, P., "A Study of Covariance Functions Related to the Earth's -.Disturbing Potential," Report No. 151, Dept of Geodetic Science, The

Ohio State University, April 1971, AFCRL-71-0240, AD 728688.

Meisal, P., "The Use of Finite Elements in Physical Geodesy," Report No.S-
313, Dept. of Geodetic Science and Surveying, The Ohio State
University, April 1981, AFGL-TR-81-0114, AD-A104 164/9.

Molodenskii, M.S., V.F. Eremeev and M.I. Yurkina, Methods for Study of
the External Gravitational Field and Figure of the Earth, Translated
from Russian, Israel Program for Scientific Translations, Jerusalem,
1962.

Moritz, IL, "On the Use of the Terrain Correction in Solving
Molodensky's Problem," Report No. 108, Dept. of Geodetic Science,
The Ohio State University, May 1968, AFCRL-68-0298, AD 676302.

Moritz, H., "Least Squares Estimation in Physical Geodesy," Report No.
130, Dept. of Geodetic Science, The Ohio State University, March
1970a, AFCRL-70-0202, AD707508.

Moritz, H., "Molodensky's Series and Analytical Continuation," Report No.
145, Dept. of Geodetic Science, The Ohio State University, September
1970b, AFCRL-70-0698, AD724133.

Moritz, H., "Advanced Least Squares Methods," Report No. 175, Dept. of
Geodetic Science, The Ohio State University, June 1972a,
AFCRL-72-0363, AD749873.

Moritz, H., "Convergence of Molodensky's Series," Report No. 183, Dept.
of Geodetic Science, The Ohio State University, September 1972b,
AFCRL-72-0663, AD754251. -4-

d " %

'p . . ". . . . . . " . . " . " . " . " . ' - . ' .. ' ' -' .. " .. " .. ' " .. ' .. ' .. . .. .. . . . . . . . . . . . ::



139

Moritz, H., "Integral Formulas and Collocation," Report No. 234, Dept. of
Geodetic Science, The Ohio State University, December 1975,
AFCRL-TR-75-0628, AD-A022 976/5GA.

Moritz, H., "Introduction to Interpolation and Approximation," in
Approximation Methods in Physical Geodesy, H. Moritz and H. Sunkel
(eds.), Herbert Wichmann Verlag, Karlsruhe, 1978a.

Moritz, H., "Least Squares Collocation," Reviews of Geophysics and Space
Physics, vol. 16, No. 3, pp. 421-430, 1978b.

S* -,

Moritz, H., Advanced Physical Geodesy, Herbert Wichmann Verlag, -
Karlsruhe, 1980.

Moritz, H., "Local Geoid Determination in Mountain Regions," Report No.
352, Dept. of Geodetic Science and Surveying, The Ohio State
University, December 1983, AFGL-TR-0042, ADA145799.

Needham, P.E., "The Formation and Evaluation of Detailed Geopotential
Models Based on Point Masses," Report No. 149, Dept. of Geodetic
Science, The Ohio State University, December 1970, AFCRL-70-0718,
AD725060.

Noe, H., "Numerical Investigations on the Problem of Molodensky," der
geodatischen Institute der Technischen Universitat, Graz, Folge 36,
1980.

Paul, M.K., "Recurrence Relations for the Truncation Error Coefficients "
for the Extended Stokes Function," Bulletin Geodesique, vol. 57, No.
2, pp. 152-166, 1983.

Pellinen, L.P., "Effects of the Earth Ellipticity on Solving Geodetic
Boundary Value Problem," Bolletino di Geodesia e Scienze Affini, vol.
41, No. 1, pp. 89-103, 1982.

Rapp, R.H., "A FORTRAN Program for the Computation of the Normal
Gravity and Gravitational Field of the Earth," Report No. 52, Dept. of
Geodetic Science, The Ohio State University, January 1966a,
AFCRL-66-288, AD486264L.

Rapp, R.H., "A FORTRAN Program for the Computation of the Disturbance
Components of Gravity," Report No. 76, Dept. of Geodetic Science,
The Ohio State University, August 1966b, AFCRL-66-670, AD805292L.

Rapp, R.H., "Potential Coefficient and Anomaly Degree Variance Modeling
Revisited," Report No. 293, Dept. of Geodetic Science, The Ohio State
University, September 1979, AFGL-TR-79-0245, AD-A082 322/9.

*. Rapp, R.H., "Geometric Geodesy," vol. 1 (class notes), Department of
Geodetic Science and Surveying, The Ohio State University, 1980.

_______.. . ....... ______ .. .. § ~ > i- . .. \ vv



140 .. "

Rapp, R.H., "Ellipsoidal Corrections for Geoid Undulation Computations,"
Report No. 308, Dept. of Geodetic Science and Surveying, The Ohio
State University, March 1981a, NGR 36-008-161, N81-25603/4.

Rapp, R.H., "The Earth's Gravity Field to Degree and Order 180 Using ,
Seasat Altimeter Data, Terrestrial Data, and other Data," Report No.
322, Dept. of Geodetic Science and Surveying, The Ohio State
University, December 1981b, AFGL-TR-82-0019, AD-Al13 098/8.

Rapp, R.H., "Degree Variances of the Earth's Potential, Topography and
its Isostatic Compensation," Bulletin Geodesique, vol. 56, No. 2, pp.
84-94, 1982a.

Rapp, R.H., "A FORTRAN Program for the Computation of Gravimetric
Quantities from High Degree Spherical Harmonic Expansions," Report
No. 334, Dept. of Geodetic Science, The Ohio State University,
September 1982b, AFGL-TR-82-0272, ADA123406.

Rapp, R.H., "The Determination of High Degree Potential Coefficient
Expansions from the Combination of Satellite and Terrestrial Gravity
Information," Report No. 361, Dept. of Geodetic Science and
Surveying, The Ohio State University, December 1984,
NGR-36-008-161.

Rizos, C., "An Efficient Computer Technique for the Evaluation of
Geopotential from Spherical Harmonic Models," Aust. J. Geodesy.
Photostrammetry and Surveying, No. 31, pp. 161-169, December 1979.

Rummel, R., "Downward Continuation of Gravity Information From Satellite
Tracking or Satellite Gradiometry in Local Areas," Report No. 221,
Dept. of Geodetic Science, The Ohio State University, April 1975,
NGR-36-008-161, N75-28594.

Sanso, F., "Recent Advances in the Theory of the Geodetic Boundary
Value Problem," Reviews of Geophysics and Space Physics, vol. 19,
No. 3, pp. 437-449, August 1981.

Schwarz, K.-P. and G. Lachapelle, "Local Characteristics of the Gravity
Anomaly Covariance function," Bulletin Geodesigue, vol. 54, pp. 21-35,
1980.

Shepperd, S.W., "Molodenskii-type Coefficients with Application to
Gravity Disturbance Vector Truncation Errors at Altitude," Report
No. R-139, The Charles Stark Draper Laboratory, Inc., Cambridge,
MA, October 1979.

Shepperd , S.W., "A Recursive Algorithm for Evaluating Molodenskii-Type
Truncation Error Coefficients at Altitude," Bulletin Geodesique, vol.
56, No. 2, pp. 95-105, 1982.

. .. _,... _' " ....... .; . _ _.: .. ..... .'.:,_e' '._e .. .,. '.'*,: . , L L ,_' ,_ _ *._ .



141

Sjoberg, L., "On the Discrete Boundary Value Problem of Physical
Geodesy with Harmonic Reductions to an Internal Sphere," Division
of Geodesy, The Royal Institute of Technology, Stockholm, 1975.

Sjoberg, L., "A Comparison of Bjerhammar's Methods and Collocation in
Physical Geodesy," Report No. 273, Dept. of Geodetic Science, The
Ohio State University, July 1978, AFGL-TR-78-0203, AD-A063 194/5GA. 41

Sjoberg, L., "Least Squares Combination of Satellite and Terrestrial Data
in Physical Geodesy," presented at the International Symposium on
Space Geodesy and its Applications, November 1980. Cannes. Ann.
Geohys., vol. 37, No. 1, pp. 25-30, 1981.

Sunkel, H., "Feasibility Studies for the Prediction of the Gravity
Disturbance Vector in High Altitudes," Report No. 311, Dept. of
Geodetic Science and Surveying, The Ohio State University, March
1981a, AFGL-TR-81-0084, AD-A102 943/8.

Sunkel, H., "Point Mass Models and the Anomalous Gravitational Field of
the Earth," Report No. 328, Dept. of Geodetic Science and Surveying,
The Ohio State University, December 1981b, AFGL-TR-82-0084,
AD-AII5 216/4.

Sunkel, H., "The Geoid in Austria," in Proceedings of the International
Association of Geodesy (IAG) Symposia, Hamburg, FRG, pp. 348-364,
August 1983a.

Sunkel, H., "The Generation of a Mass Point Model from Surface Gravity
Data," Report No. 353, Dept. of Geodetic Science and Surveying, The
Ohio State University, December 1983b, AFGL-TR-83-0318, ADA142327.

Tscherning, C.C., "Representation of Covariance Functions Related to the
Anomalous Potential of the Earth Using Reproducing Kernels,"
Internal Report No. 3, Danish Geodetic Institute, Copenhagen, 1972.

Tacherning, C.C. and R.H. Rapp, "Closed Covariance Expressions for
Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical
Implied by Anomaly Degree Variance Models," Report No. 208, Dept.
of Geodetic Science, The Ohio State University, May 1974,
AFCRL-TR-74-0231, AD 786 417.

Tscherning, C.C., "Covariance Expressions for Second and Lower Order Y- J
Derivatives of the Anomalous Potential," Report No. 225, Dept. of
Geodetic Science and Surveying, The Ohio State University, January
1976, AFGL-TR-76-0052, AD-A024-720.

Tacherning, C.C., "A Note on the Choice of Norm when Using Collocation
for the Computation of Approximations to the Anomalous Potential,"
Bulletin Geodesique, vol. 51, No. 2, 1977.

. .'...: -

.. .--.,7-



142

Tacherning, C.C., "Gravity Prediction Using Collocation and Taking
Known Mass Density Anomalies into Account," Geophys. J.R. astr. "
Soc., vol. 59, pp. 147-153, 1979.

Tacherning, C.C., "Comparison of Some Methods for the Detailed
Representation of the Earth's Gravity Field," Reviews of Geophysics
and Space Physics, vol. 19, No. 1, pp. 213-221, 1981.

Tacherning, C.C. and R. Forsberg, "Prediction Test Using Least Squares
S Collocation and Residual Terrain Reduction," in Techniques to Predict

Gravity Anomalies and Deflections of the Vertical in Mountainous [
Areas, K.-P. Schwarz (ed.), Report No. 30004, Dept. of Surveying
Engineering, The University of Calgary, Alberta, 1983.

Tscherning, C.C., "On the Use and Abuse of Molodensky's Mountain," in
Geodesy in Transition, K.-P. Schwarz and G. Lachapelle (eds.),
Report No. 60002, Dept. of Surveying Engineering, The University of
Calgary, Alberta, July 1983a.

Tscherning, C.C., "The Role of High Degree Spherical Harmonic
Expansions in Solving Geodetic Problems," presented at symposium:
Improved Gravity Field Estimation on a Global Basis, General
Assembly of the International Association of Geodesy, Hamburg,
August 1983b.

Tscherning, C.C., R.H. Rapp and C.C. Goad, "A Comparison of Methods for
Computing Gravimetric Quantities from High Degree Spherical
Harmonic Expansions," Manuscripta Geodaetica, vol. 8, No. 3, pp.
249-272, December 1983.

Wenzel, H.-G., "Geoid Computation by Least Squares Spectral Combination
Using Integral Kernels," presented at the General Meeting of the
International Association of Geodesy, Tokyo, May 1982.

Wong, L. and R. Gore, "Accuracy of Geoid Heights from Modified Stokes
Kernels," GeoDhys. J.R. astr. Soc., vol. 18, pp. 81-91, 1969.

-. 4-.'

• . "'°*

ir.,

V'

° °.



'a

I

I
~

S

586.1
pI

9%i (


